MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  7p3e10 Structured version   Visualization version   GIF version

Theorem 7p3e10 12441
Description: 7 + 3 = 10. (Contributed by NM, 5-Feb-2007.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 6-Sep-2021.)
Assertion
Ref Expression
7p3e10 (7 + 3) = 10

Proof of Theorem 7p3e10
StepHypRef Expression
1 df-3 11967 . . . 4 3 = (2 + 1)
21oveq2i 7266 . . 3 (7 + 3) = (7 + (2 + 1))
3 7cn 11997 . . . 4 7 ∈ ℂ
4 2cn 11978 . . . 4 2 ∈ ℂ
5 ax-1cn 10860 . . . 4 1 ∈ ℂ
63, 4, 5addassi 10916 . . 3 ((7 + 2) + 1) = (7 + (2 + 1))
72, 6eqtr4i 2769 . 2 (7 + 3) = ((7 + 2) + 1)
8 7p2e9 12064 . . 3 (7 + 2) = 9
98oveq1i 7265 . 2 ((7 + 2) + 1) = (9 + 1)
10 9p1e10 12368 . 2 (9 + 1) = 10
117, 9, 103eqtri 2770 1 (7 + 3) = 10
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  2c2 11958  3c3 11959  7c7 11963  9c9 11965  cdc 12366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-dec 12367
This theorem is referenced by:  7p4e11  12442  1259lem4  16763  2503lem2  16767  2503lem3  16768  4001lem4  16773  log2ublem3  26003  log2ub  26004  ex-decpmul  40241  127prm  44939  evengpoap3  45139
  Copyright terms: Public domain W3C validator