| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij1lem7 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij1 10208. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| Ref | Expression |
|---|---|
| ackbij1lem7 | ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘𝐴) = (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iuneq1 4980 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) = ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) | |
| 2 | 1 | fveq2d 6869 | . 2 ⊢ (𝑥 = 𝐴 → (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦)) = (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦))) |
| 3 | ackbij.f | . 2 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
| 4 | fvex 6878 | . 2 ⊢ (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6975 | 1 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘𝐴) = (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3921 𝒫 cpw 4571 {csn 4597 ∪ ciun 4963 ↦ cmpt 5196 × cxp 5644 ‘cfv 6519 ωcom 7850 Fincfn 8922 cardccrd 9906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-iota 6472 df-fun 6521 df-fv 6527 |
| This theorem is referenced by: ackbij1lem8 10197 ackbij1lem9 10198 |
| Copyright terms: Public domain | W3C validator |