MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem7 Structured version   Visualization version   GIF version

Theorem ackbij1lem7 10294
Description: Lemma for ackbij1 10306. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem7 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹𝐴) = (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦

Proof of Theorem ackbij1lem7
StepHypRef Expression
1 iuneq1 5031 . . 3 (𝑥 = 𝐴 𝑦𝑥 ({𝑦} × 𝒫 𝑦) = 𝑦𝐴 ({𝑦} × 𝒫 𝑦))
21fveq2d 6924 . 2 (𝑥 = 𝐴 → (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)) = (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)))
3 ackbij.f . 2 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
4 fvex 6933 . 2 (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ∈ V
52, 3, 4fvmpt 7029 1 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹𝐴) = (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cin 3975  𝒫 cpw 4622  {csn 4648   ciun 5015  cmpt 5249   × cxp 5698  cfv 6573  ωcom 7903  Fincfn 9003  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581
This theorem is referenced by:  ackbij1lem8  10295  ackbij1lem9  10296
  Copyright terms: Public domain W3C validator