Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ackbij1lem7 | Structured version Visualization version GIF version |
Description: Lemma for ackbij1 9987. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
Ref | Expression |
---|---|
ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
Ref | Expression |
---|---|
ackbij1lem7 | ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘𝐴) = (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1 4946 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) = ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) | |
2 | 1 | fveq2d 6773 | . 2 ⊢ (𝑥 = 𝐴 → (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦)) = (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦))) |
3 | ackbij.f | . 2 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
4 | fvex 6782 | . 2 ⊢ (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ∈ V | |
5 | 2, 3, 4 | fvmpt 6870 | 1 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘𝐴) = (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ∩ cin 3891 𝒫 cpw 4539 {csn 4567 ∪ ciun 4930 ↦ cmpt 5162 × cxp 5587 ‘cfv 6431 ωcom 7701 Fincfn 8708 cardccrd 9686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6389 df-fun 6433 df-fv 6439 |
This theorem is referenced by: ackbij1lem8 9976 ackbij1lem9 9977 |
Copyright terms: Public domain | W3C validator |