MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem7 Structured version   Visualization version   GIF version

Theorem ackbij1lem7 9913
Description: Lemma for ackbij1 9925. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem7 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹𝐴) = (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦

Proof of Theorem ackbij1lem7
StepHypRef Expression
1 iuneq1 4937 . . 3 (𝑥 = 𝐴 𝑦𝑥 ({𝑦} × 𝒫 𝑦) = 𝑦𝐴 ({𝑦} × 𝒫 𝑦))
21fveq2d 6760 . 2 (𝑥 = 𝐴 → (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)) = (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)))
3 ackbij.f . 2 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
4 fvex 6769 . 2 (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ∈ V
52, 3, 4fvmpt 6857 1 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹𝐴) = (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cin 3882  𝒫 cpw 4530  {csn 4558   ciun 4921  cmpt 5153   × cxp 5578  cfv 6418  ωcom 7687  Fincfn 8691  cardccrd 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426
This theorem is referenced by:  ackbij1lem8  9914  ackbij1lem9  9915
  Copyright terms: Public domain W3C validator