MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem7 Structured version   Visualization version   GIF version

Theorem ackbij1lem7 10263
Description: Lemma for ackbij1 10275. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem7 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹𝐴) = (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦

Proof of Theorem ackbij1lem7
StepHypRef Expression
1 iuneq1 5013 . . 3 (𝑥 = 𝐴 𝑦𝑥 ({𝑦} × 𝒫 𝑦) = 𝑦𝐴 ({𝑦} × 𝒫 𝑦))
21fveq2d 6911 . 2 (𝑥 = 𝐴 → (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)) = (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)))
3 ackbij.f . 2 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
4 fvex 6920 . 2 (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)) ∈ V
52, 3, 4fvmpt 7016 1 (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹𝐴) = (card‘ 𝑦𝐴 ({𝑦} × 𝒫 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cin 3962  𝒫 cpw 4605  {csn 4631   ciun 4996  cmpt 5231   × cxp 5687  cfv 6563  ωcom 7887  Fincfn 8984  cardccrd 9973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571
This theorem is referenced by:  ackbij1lem8  10264  ackbij1lem9  10265
  Copyright terms: Public domain W3C validator