![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij1lem7 | Structured version Visualization version GIF version |
Description: Lemma for ackbij1 9263. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
Ref | Expression |
---|---|
ackbij.f | ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
Ref | Expression |
---|---|
ackbij1lem7 | ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘𝐴) = (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1 4669 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦) = ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) | |
2 | 1 | fveq2d 6337 | . 2 ⊢ (𝑥 = 𝐴 → (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦)) = (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦))) |
3 | ackbij.f | . 2 ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) | |
4 | fvex 6343 | . 2 ⊢ (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ∈ V | |
5 | 2, 3, 4 | fvmpt 6425 | 1 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘𝐴) = (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ∩ cin 3723 𝒫 cpw 4298 {csn 4317 ∪ ciun 4655 ↦ cmpt 4864 × cxp 5248 ‘cfv 6032 ωcom 7213 Fincfn 8110 cardccrd 8962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 829 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3589 df-dif 3727 df-un 3729 df-in 3731 df-ss 3738 df-nul 4065 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-iota 5995 df-fun 6034 df-fv 6040 |
This theorem is referenced by: ackbij1lem8 9252 ackbij1lem9 9253 |
Copyright terms: Public domain | W3C validator |