![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij1lem7 | Structured version Visualization version GIF version |
Description: Lemma for ackbij1 10232. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
Ref | Expression |
---|---|
ackbij.f | β’ πΉ = (π₯ β (π« Ο β© Fin) β¦ (cardββͺ π¦ β π₯ ({π¦} Γ π« π¦))) |
Ref | Expression |
---|---|
ackbij1lem7 | β’ (π΄ β (π« Ο β© Fin) β (πΉβπ΄) = (cardββͺ π¦ β π΄ ({π¦} Γ π« π¦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq1 5013 | . . 3 β’ (π₯ = π΄ β βͺ π¦ β π₯ ({π¦} Γ π« π¦) = βͺ π¦ β π΄ ({π¦} Γ π« π¦)) | |
2 | 1 | fveq2d 6895 | . 2 β’ (π₯ = π΄ β (cardββͺ π¦ β π₯ ({π¦} Γ π« π¦)) = (cardββͺ π¦ β π΄ ({π¦} Γ π« π¦))) |
3 | ackbij.f | . 2 β’ πΉ = (π₯ β (π« Ο β© Fin) β¦ (cardββͺ π¦ β π₯ ({π¦} Γ π« π¦))) | |
4 | fvex 6904 | . 2 β’ (cardββͺ π¦ β π΄ ({π¦} Γ π« π¦)) β V | |
5 | 2, 3, 4 | fvmpt 6998 | 1 β’ (π΄ β (π« Ο β© Fin) β (πΉβπ΄) = (cardββͺ π¦ β π΄ ({π¦} Γ π« π¦))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β© cin 3947 π« cpw 4602 {csn 4628 βͺ ciun 4997 β¦ cmpt 5231 Γ cxp 5674 βcfv 6543 Οcom 7854 Fincfn 8938 cardccrd 9929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 |
This theorem is referenced by: ackbij1lem8 10221 ackbij1lem9 10222 |
Copyright terms: Public domain | W3C validator |