MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem6 Structured version   Visualization version   GIF version

Theorem ackbij1lem6 10118
Description: Lemma for ackbij2 10136. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
ackbij1lem6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ (𝒫 ω ∩ Fin))

Proof of Theorem ackbij1lem6
StepHypRef Expression
1 elinel2 4153 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin)
2 elinel2 4153 . . . 4 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ Fin)
3 unfi 9085 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
41, 2, 3syl2an 596 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ Fin)
5 elinel1 4152 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω)
6 elinel1 4152 . . . 4 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ 𝒫 ω)
7 elpwi 4558 . . . . 5 (𝐴 ∈ 𝒫 ω → 𝐴 ⊆ ω)
8 elpwi 4558 . . . . 5 (𝐵 ∈ 𝒫 ω → 𝐵 ⊆ ω)
9 simpl 482 . . . . . 6 ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → 𝐴 ⊆ ω)
10 simpr 484 . . . . . 6 ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → 𝐵 ⊆ ω)
119, 10unssd 4143 . . . . 5 ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → (𝐴𝐵) ⊆ ω)
127, 8, 11syl2an 596 . . . 4 ((𝐴 ∈ 𝒫 ω ∧ 𝐵 ∈ 𝒫 ω) → (𝐴𝐵) ⊆ ω)
135, 6, 12syl2an 596 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ⊆ ω)
144, 13elpwd 4557 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ 𝒫 ω)
1514, 4elind 4151 1 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ (𝒫 ω ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cun 3901  cin 3902  wss 3903  𝒫 cpw 4551  ωcom 7799  Fincfn 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-en 8873  df-fin 8876
This theorem is referenced by:  ackbij1lem9  10121  ackbij1lem18  10130
  Copyright terms: Public domain W3C validator