| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij1lem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij2 10202. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij1lem6 | ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ∈ (𝒫 ω ∩ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel2 4168 | . . . 4 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin) | |
| 2 | elinel2 4168 | . . . 4 ⊢ (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ Fin) | |
| 3 | unfi 9141 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
| 4 | 1, 2, 3 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ∈ Fin) |
| 5 | elinel1 4167 | . . . 4 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω) | |
| 6 | elinel1 4167 | . . . 4 ⊢ (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ 𝒫 ω) | |
| 7 | elpwi 4573 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 ω → 𝐴 ⊆ ω) | |
| 8 | elpwi 4573 | . . . . 5 ⊢ (𝐵 ∈ 𝒫 ω → 𝐵 ⊆ ω) | |
| 9 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → 𝐴 ⊆ ω) | |
| 10 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → 𝐵 ⊆ ω) | |
| 11 | 9, 10 | unssd 4158 | . . . . 5 ⊢ ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → (𝐴 ∪ 𝐵) ⊆ ω) |
| 12 | 7, 8, 11 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ 𝒫 ω ∧ 𝐵 ∈ 𝒫 ω) → (𝐴 ∪ 𝐵) ⊆ ω) |
| 13 | 5, 6, 12 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ⊆ ω) |
| 14 | 4, 13 | elpwd 4572 | . 2 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ∈ 𝒫 ω) |
| 15 | 14, 4 | elind 4166 | 1 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ∈ (𝒫 ω ∩ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∪ cun 3915 ∩ cin 3916 ⊆ wss 3917 𝒫 cpw 4566 ωcom 7845 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-en 8922 df-fin 8925 |
| This theorem is referenced by: ackbij1lem9 10187 ackbij1lem18 10196 |
| Copyright terms: Public domain | W3C validator |