| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ackbij1lem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for ackbij2 10256. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| ackbij1lem6 | ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ∈ (𝒫 ω ∩ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel2 4177 | . . . 4 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin) | |
| 2 | elinel2 4177 | . . . 4 ⊢ (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ Fin) | |
| 3 | unfi 9185 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
| 4 | 1, 2, 3 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ∈ Fin) |
| 5 | elinel1 4176 | . . . 4 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω) | |
| 6 | elinel1 4176 | . . . 4 ⊢ (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ 𝒫 ω) | |
| 7 | elpwi 4582 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 ω → 𝐴 ⊆ ω) | |
| 8 | elpwi 4582 | . . . . 5 ⊢ (𝐵 ∈ 𝒫 ω → 𝐵 ⊆ ω) | |
| 9 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → 𝐴 ⊆ ω) | |
| 10 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → 𝐵 ⊆ ω) | |
| 11 | 9, 10 | unssd 4167 | . . . . 5 ⊢ ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → (𝐴 ∪ 𝐵) ⊆ ω) |
| 12 | 7, 8, 11 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ 𝒫 ω ∧ 𝐵 ∈ 𝒫 ω) → (𝐴 ∪ 𝐵) ⊆ ω) |
| 13 | 5, 6, 12 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ⊆ ω) |
| 14 | 4, 13 | elpwd 4581 | . 2 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ∈ 𝒫 ω) |
| 15 | 14, 4 | elind 4175 | 1 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ∈ (𝒫 ω ∩ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∪ cun 3924 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 ωcom 7861 Fincfn 8959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-en 8960 df-fin 8963 |
| This theorem is referenced by: ackbij1lem9 10241 ackbij1lem18 10250 |
| Copyright terms: Public domain | W3C validator |