Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ackbij1lem6 | Structured version Visualization version GIF version |
Description: Lemma for ackbij2 9999. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij1lem6 | ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ∈ (𝒫 ω ∩ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel2 4130 | . . . 4 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin) | |
2 | elinel2 4130 | . . . 4 ⊢ (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ Fin) | |
3 | unfi 8955 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
4 | 1, 2, 3 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ∈ Fin) |
5 | elinel1 4129 | . . . 4 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω) | |
6 | elinel1 4129 | . . . 4 ⊢ (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ 𝒫 ω) | |
7 | elpwi 4542 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 ω → 𝐴 ⊆ ω) | |
8 | elpwi 4542 | . . . . 5 ⊢ (𝐵 ∈ 𝒫 ω → 𝐵 ⊆ ω) | |
9 | simpl 483 | . . . . . 6 ⊢ ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → 𝐴 ⊆ ω) | |
10 | simpr 485 | . . . . . 6 ⊢ ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → 𝐵 ⊆ ω) | |
11 | 9, 10 | unssd 4120 | . . . . 5 ⊢ ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → (𝐴 ∪ 𝐵) ⊆ ω) |
12 | 7, 8, 11 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ 𝒫 ω ∧ 𝐵 ∈ 𝒫 ω) → (𝐴 ∪ 𝐵) ⊆ ω) |
13 | 5, 6, 12 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ⊆ ω) |
14 | 4, 13 | elpwd 4541 | . 2 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ∈ 𝒫 ω) |
15 | 14, 4 | elind 4128 | 1 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ∈ (𝒫 ω ∩ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∪ cun 3885 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 ωcom 7712 Fincfn 8733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-en 8734 df-fin 8737 |
This theorem is referenced by: ackbij1lem9 9984 ackbij1lem18 9993 |
Copyright terms: Public domain | W3C validator |