MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem6 Structured version   Visualization version   GIF version

Theorem ackbij1lem6 9621
Description: Lemma for ackbij2 9639. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
ackbij1lem6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ (𝒫 ω ∩ Fin))

Proof of Theorem ackbij1lem6
StepHypRef Expression
1 elinel2 4147 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin)
2 elinel2 4147 . . . 4 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ Fin)
3 unfi 8759 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
41, 2, 3syl2an 597 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ Fin)
5 elinel1 4146 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω)
6 elinel1 4146 . . . 4 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ 𝒫 ω)
7 elpwi 4520 . . . . 5 (𝐴 ∈ 𝒫 ω → 𝐴 ⊆ ω)
8 elpwi 4520 . . . . 5 (𝐵 ∈ 𝒫 ω → 𝐵 ⊆ ω)
9 simpl 485 . . . . . 6 ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → 𝐴 ⊆ ω)
10 simpr 487 . . . . . 6 ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → 𝐵 ⊆ ω)
119, 10unssd 4137 . . . . 5 ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → (𝐴𝐵) ⊆ ω)
127, 8, 11syl2an 597 . . . 4 ((𝐴 ∈ 𝒫 ω ∧ 𝐵 ∈ 𝒫 ω) → (𝐴𝐵) ⊆ ω)
135, 6, 12syl2an 597 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ⊆ ω)
144, 13elpwd 4519 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ 𝒫 ω)
1514, 4elind 4145 1 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ (𝒫 ω ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  cun 3907  cin 3908  wss 3909  𝒫 cpw 4511  ωcom 7554  Fincfn 8483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4811  df-int 4849  df-iun 4893  df-br 5039  df-opab 5101  df-mpt 5119  df-tr 5145  df-id 5432  df-eprel 5437  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-ov 7132  df-oprab 7133  df-mpo 7134  df-om 7555  df-wrecs 7921  df-recs 7982  df-rdg 8020  df-oadd 8080  df-er 8263  df-en 8484  df-fin 8487
This theorem is referenced by:  ackbij1lem9  9624  ackbij1lem18  9633
  Copyright terms: Public domain W3C validator