MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem6 Structured version   Visualization version   GIF version

Theorem ackbij1lem6 10293
Description: Lemma for ackbij2 10311. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Assertion
Ref Expression
ackbij1lem6 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ (𝒫 ω ∩ Fin))

Proof of Theorem ackbij1lem6
StepHypRef Expression
1 elinel2 4225 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin)
2 elinel2 4225 . . . 4 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ Fin)
3 unfi 9238 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
41, 2, 3syl2an 595 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ Fin)
5 elinel1 4224 . . . 4 (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω)
6 elinel1 4224 . . . 4 (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ 𝒫 ω)
7 elpwi 4629 . . . . 5 (𝐴 ∈ 𝒫 ω → 𝐴 ⊆ ω)
8 elpwi 4629 . . . . 5 (𝐵 ∈ 𝒫 ω → 𝐵 ⊆ ω)
9 simpl 482 . . . . . 6 ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → 𝐴 ⊆ ω)
10 simpr 484 . . . . . 6 ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → 𝐵 ⊆ ω)
119, 10unssd 4215 . . . . 5 ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → (𝐴𝐵) ⊆ ω)
127, 8, 11syl2an 595 . . . 4 ((𝐴 ∈ 𝒫 ω ∧ 𝐵 ∈ 𝒫 ω) → (𝐴𝐵) ⊆ ω)
135, 6, 12syl2an 595 . . 3 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ⊆ ω)
144, 13elpwd 4628 . 2 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ 𝒫 ω)
1514, 4elind 4223 1 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴𝐵) ∈ (𝒫 ω ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cun 3974  cin 3975  wss 3976  𝒫 cpw 4622  ωcom 7903  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-en 9004  df-fin 9007
This theorem is referenced by:  ackbij1lem9  10296  ackbij1lem18  10305
  Copyright terms: Public domain W3C validator