![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ackbij1lem6 | Structured version Visualization version GIF version |
Description: Lemma for ackbij2 10277. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
Ref | Expression |
---|---|
ackbij1lem6 | ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ∈ (𝒫 ω ∩ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel2 4194 | . . . 4 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ Fin) | |
2 | elinel2 4194 | . . . 4 ⊢ (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ Fin) | |
3 | unfi 9202 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
4 | 1, 2, 3 | syl2an 594 | . . 3 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ∈ Fin) |
5 | elinel1 4193 | . . . 4 ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → 𝐴 ∈ 𝒫 ω) | |
6 | elinel1 4193 | . . . 4 ⊢ (𝐵 ∈ (𝒫 ω ∩ Fin) → 𝐵 ∈ 𝒫 ω) | |
7 | elpwi 4604 | . . . . 5 ⊢ (𝐴 ∈ 𝒫 ω → 𝐴 ⊆ ω) | |
8 | elpwi 4604 | . . . . 5 ⊢ (𝐵 ∈ 𝒫 ω → 𝐵 ⊆ ω) | |
9 | simpl 481 | . . . . . 6 ⊢ ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → 𝐴 ⊆ ω) | |
10 | simpr 483 | . . . . . 6 ⊢ ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → 𝐵 ⊆ ω) | |
11 | 9, 10 | unssd 4184 | . . . . 5 ⊢ ((𝐴 ⊆ ω ∧ 𝐵 ⊆ ω) → (𝐴 ∪ 𝐵) ⊆ ω) |
12 | 7, 8, 11 | syl2an 594 | . . . 4 ⊢ ((𝐴 ∈ 𝒫 ω ∧ 𝐵 ∈ 𝒫 ω) → (𝐴 ∪ 𝐵) ⊆ ω) |
13 | 5, 6, 12 | syl2an 594 | . . 3 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ⊆ ω) |
14 | 4, 13 | elpwd 4603 | . 2 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ∈ 𝒫 ω) |
15 | 14, 4 | elind 4192 | 1 ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ∈ (𝒫 ω ∩ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2099 ∪ cun 3944 ∩ cin 3945 ⊆ wss 3946 𝒫 cpw 4597 ωcom 7868 Fincfn 8966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-om 7869 df-en 8967 df-fin 8970 |
This theorem is referenced by: ackbij1lem9 10262 ackbij1lem18 10271 |
Copyright terms: Public domain | W3C validator |