Step | Hyp | Ref
| Expression |
1 | | ssid 3948 |
. 2
⊢ 𝐵 ⊆ 𝐵 |
2 | | fsumrlim.2 |
. . 3
⊢ (𝜑 → 𝐵 ∈ Fin) |
3 | | sseq1 3951 |
. . . . . 6
⊢ (𝑤 = ∅ → (𝑤 ⊆ 𝐵 ↔ ∅ ⊆ 𝐵)) |
4 | | sumeq1 15398 |
. . . . . . . . 9
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑘 ∈ ∅ 𝐶) |
5 | | sum0 15431 |
. . . . . . . . 9
⊢
Σ𝑘 ∈
∅ 𝐶 =
0 |
6 | 4, 5 | eqtrdi 2796 |
. . . . . . . 8
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 𝐶 = 0) |
7 | 6 | mpteq2dv 5181 |
. . . . . . 7
⊢ (𝑤 = ∅ → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ 0)) |
8 | | sumeq1 15398 |
. . . . . . . 8
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 𝐷 = Σ𝑘 ∈ ∅ 𝐷) |
9 | | sum0 15431 |
. . . . . . . 8
⊢
Σ𝑘 ∈
∅ 𝐷 =
0 |
10 | 8, 9 | eqtrdi 2796 |
. . . . . . 7
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 𝐷 = 0) |
11 | 7, 10 | breq12d 5092 |
. . . . . 6
⊢ (𝑤 = ∅ → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷 ↔ (𝑥 ∈ 𝐴 ↦ 0) ⇝𝑟
0)) |
12 | 3, 11 | imbi12d 345 |
. . . . 5
⊢ (𝑤 = ∅ → ((𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷) ↔ (∅ ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 0) ⇝𝑟
0))) |
13 | 12 | imbi2d 341 |
. . . 4
⊢ (𝑤 = ∅ → ((𝜑 → (𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷)) ↔ (𝜑 → (∅ ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 0) ⇝𝑟
0)))) |
14 | | sseq1 3951 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝑤 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐵)) |
15 | | sumeq1 15398 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑘 ∈ 𝑦 𝐶) |
16 | 15 | mpteq2dv 5181 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶)) |
17 | | sumeq1 15398 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → Σ𝑘 ∈ 𝑤 𝐷 = Σ𝑘 ∈ 𝑦 𝐷) |
18 | 16, 17 | breq12d 5092 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷 ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷)) |
19 | 14, 18 | imbi12d 345 |
. . . . 5
⊢ (𝑤 = 𝑦 → ((𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷) ↔ (𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷))) |
20 | 19 | imbi2d 341 |
. . . 4
⊢ (𝑤 = 𝑦 → ((𝜑 → (𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷)) ↔ (𝜑 → (𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷)))) |
21 | | sseq1 3951 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 ⊆ 𝐵 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) |
22 | | sumeq1 15398 |
. . . . . . . 8
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) |
23 | 22 | mpteq2dv 5181 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)) |
24 | | sumeq1 15398 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘 ∈ 𝑤 𝐷 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷) |
25 | 23, 24 | breq12d 5092 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷 ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷)) |
26 | 21, 25 | imbi12d 345 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷))) |
27 | 26 | imbi2d 341 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷)) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷)))) |
28 | | sseq1 3951 |
. . . . . 6
⊢ (𝑤 = 𝐵 → (𝑤 ⊆ 𝐵 ↔ 𝐵 ⊆ 𝐵)) |
29 | | sumeq1 15398 |
. . . . . . . 8
⊢ (𝑤 = 𝐵 → Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
30 | 29 | mpteq2dv 5181 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶)) |
31 | | sumeq1 15398 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → Σ𝑘 ∈ 𝑤 𝐷 = Σ𝑘 ∈ 𝐵 𝐷) |
32 | 30, 31 | breq12d 5092 |
. . . . . 6
⊢ (𝑤 = 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷 ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝐵 𝐷)) |
33 | 28, 32 | imbi12d 345 |
. . . . 5
⊢ (𝑤 = 𝐵 → ((𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷) ↔ (𝐵 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝐵 𝐷))) |
34 | 33 | imbi2d 341 |
. . . 4
⊢ (𝑤 = 𝐵 → ((𝜑 → (𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷)) ↔ (𝜑 → (𝐵 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝐵 𝐷)))) |
35 | | fsumrlim.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
36 | | 0cn 10968 |
. . . . . 6
⊢ 0 ∈
ℂ |
37 | | rlimconst 15251 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 0 ∈
ℂ) → (𝑥 ∈
𝐴 ↦ 0)
⇝𝑟 0) |
38 | 35, 36, 37 | sylancl 586 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 0) ⇝𝑟
0) |
39 | 38 | a1d 25 |
. . . 4
⊢ (𝜑 → (∅ ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 0) ⇝𝑟
0)) |
40 | | ssun1 4111 |
. . . . . . . . . 10
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) |
41 | | sstr 3934 |
. . . . . . . . . 10
⊢ ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵) → 𝑦 ⊆ 𝐵) |
42 | 40, 41 | mpan 687 |
. . . . . . . . 9
⊢ ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → 𝑦 ⊆ 𝐵) |
43 | 42 | imim1i 63 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷)) |
44 | | sumex 15397 |
. . . . . . . . . . . . . 14
⊢
Σ𝑘 ∈
𝑦 ⦋𝑤 / 𝑥⦌𝐶 ∈ V |
45 | 44 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) ∧ 𝑤 ∈ 𝐴) → Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶 ∈ V) |
46 | | simprr 770 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∪ {𝑧}) ⊆ 𝐵) |
47 | 46 | unssbd 4127 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → {𝑧} ⊆ 𝐵) |
48 | | vex 3435 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑧 ∈ V |
49 | 48 | snss 4725 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝐵 ↔ {𝑧} ⊆ 𝐵) |
50 | 47, 49 | sylibr 233 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝑧 ∈ 𝐵) |
51 | 50 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝑧 ∈ 𝐵) |
52 | | fsumrlim.3 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ 𝑉) |
53 | 52 | anass1rs 652 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
54 | | fsumrlim.4 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) |
55 | 53, 54 | rlimmptrcl 15315 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
56 | 55 | an32s 649 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
57 | 56 | adantllr 716 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
58 | 57 | ralrimiva 3110 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
59 | | nfcsb1v 3862 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐶 |
60 | 59 | nfel1 2925 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ |
61 | | csbeq1a 3851 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑧 → 𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
62 | 61 | eleq1d 2825 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑧 → (𝐶 ∈ ℂ ↔ ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ)) |
63 | 60, 62 | rspc 3548 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝐵 → (∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ → ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ)) |
64 | 51, 58, 63 | sylc 65 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) |
65 | 64 | ralrimiva 3110 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑥 ∈ 𝐴 ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) |
66 | 65 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → ∀𝑥 ∈ 𝐴 ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) |
67 | | nfcsb1v 3862 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 |
68 | 67 | nfel1 2925 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ |
69 | | csbeq1a 3851 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑤 → ⦋𝑧 / 𝑘⦌𝐶 = ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) |
70 | 69 | eleq1d 2825 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑤 → (⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ ↔ ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ)) |
71 | 68, 70 | rspc 3548 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ → ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ)) |
72 | 66, 71 | mpan9 507 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) ∧ 𝑤 ∈ 𝐴) → ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) |
73 | 72 | elexd 3451 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) ∧ 𝑤 ∈ 𝐴) → ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
74 | | nfcv 2909 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑤Σ𝑘 ∈ 𝑦 𝐶 |
75 | | nfcv 2909 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥𝑦 |
76 | | nfcsb1v 3862 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝐶 |
77 | 75, 76 | nfsum 15400 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶 |
78 | | csbeq1a 3851 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑤 → 𝐶 = ⦋𝑤 / 𝑥⦌𝐶) |
79 | 78 | sumeq2sdv 15414 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑤 → Σ𝑘 ∈ 𝑦 𝐶 = Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶) |
80 | 74, 77, 79 | cbvmpt 5190 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) = (𝑤 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶) |
81 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) |
82 | 80, 81 | eqbrtrrid 5115 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → (𝑤 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) |
83 | | nfcv 2909 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑤⦋𝑧 / 𝑘⦌𝐶 |
84 | 83, 67, 69 | cbvmpt 5190 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) = (𝑤 ∈ 𝐴 ↦ ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) |
85 | 54 | ralrimiva 3110 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑘 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) |
86 | 85 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑘 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) |
87 | | nfcv 2909 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘𝐴 |
88 | 87, 59 | nfmpt 5186 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘(𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) |
89 | | nfcv 2909 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘
⇝𝑟 |
90 | | nfcsb1v 3862 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐷 |
91 | 88, 89, 90 | nfbr 5126 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ⇝𝑟
⦋𝑧 / 𝑘⦌𝐷 |
92 | 61 | mpteq2dv 5181 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑧 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶)) |
93 | | csbeq1a 3851 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑧 → 𝐷 = ⦋𝑧 / 𝑘⦌𝐷) |
94 | 92, 93 | breq12d 5092 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷 ↔ (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ⇝𝑟
⦋𝑧 / 𝑘⦌𝐷)) |
95 | 91, 94 | rspc 3548 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝐵 → (∀𝑘 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷 → (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ⇝𝑟
⦋𝑧 / 𝑘⦌𝐷)) |
96 | 50, 86, 95 | sylc 65 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ⇝𝑟
⦋𝑧 / 𝑘⦌𝐷) |
97 | 96 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ⇝𝑟
⦋𝑧 / 𝑘⦌𝐷) |
98 | 84, 97 | eqbrtrrid 5115 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → (𝑤 ∈ 𝐴 ↦ ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) ⇝𝑟
⦋𝑧 / 𝑘⦌𝐷) |
99 | 45, 73, 82, 98 | rlimadd 15350 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → (𝑤 ∈ 𝐴 ↦ (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶 + ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶)) ⇝𝑟 (Σ𝑘 ∈ 𝑦 𝐷 + ⦋𝑧 / 𝑘⦌𝐷)) |
100 | | simprl 768 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ¬ 𝑧 ∈ 𝑦) |
101 | | disjsn 4653 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
102 | 100, 101 | sylibr 233 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∩ {𝑧}) = ∅) |
103 | 102 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∩ {𝑧}) = ∅) |
104 | | eqidd 2741 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧})) |
105 | 2 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝐵 ∈ Fin) |
106 | 105, 46 | ssfid 9020 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∪ {𝑧}) ∈ Fin) |
107 | 106 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∪ {𝑧}) ∈ Fin) |
108 | 46 | sselda 3926 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘 ∈ 𝐵) |
109 | 108 | adantlr 712 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘 ∈ 𝐵) |
110 | 109, 57 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐶 ∈ ℂ) |
111 | 103, 104,
107, 110 | fsumsplit 15451 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (Σ𝑘 ∈ 𝑦 𝐶 + Σ𝑘 ∈ {𝑧}𝐶)) |
112 | | nfcv 2909 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑤𝐶 |
113 | | nfcsb1v 3862 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘⦋𝑤 / 𝑘⦌𝐶 |
114 | | csbeq1a 3851 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑤 → 𝐶 = ⦋𝑤 / 𝑘⦌𝐶) |
115 | 112, 113,
114 | cbvsumi 15407 |
. . . . . . . . . . . . . . . . . 18
⊢
Σ𝑘 ∈
{𝑧}𝐶 = Σ𝑤 ∈ {𝑧}⦋𝑤 / 𝑘⦌𝐶 |
116 | | csbeq1 3840 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑧 → ⦋𝑤 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
117 | 116 | sumsn 15456 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ 𝐵 ∧ ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) → Σ𝑤 ∈ {𝑧}⦋𝑤 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
118 | 51, 64, 117 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑤 ∈ {𝑧}⦋𝑤 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
119 | 115, 118 | eqtrid 2792 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ {𝑧}𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
120 | 119 | oveq2d 7287 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (Σ𝑘 ∈ 𝑦 𝐶 + Σ𝑘 ∈ {𝑧}𝐶) = (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) |
121 | 111, 120 | eqtrd 2780 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) |
122 | 121 | mpteq2dva 5179 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = (𝑥 ∈ 𝐴 ↦ (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶))) |
123 | 122 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = (𝑥 ∈ 𝐴 ↦ (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶))) |
124 | | nfcv 2909 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑤(Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶) |
125 | | nfcv 2909 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥
+ |
126 | 77, 125, 67 | nfov 7301 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥(Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶 + ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) |
127 | 79, 69 | oveq12d 7289 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶) = (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶 + ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶)) |
128 | 124, 126,
127 | cbvmpt 5190 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐴 ↦ (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) = (𝑤 ∈ 𝐴 ↦ (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶 + ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶)) |
129 | 123, 128 | eqtrdi 2796 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = (𝑤 ∈ 𝐴 ↦ (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶 + ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶))) |
130 | | eqidd 2741 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧})) |
131 | | rlimcl 15210 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷 → 𝐷 ∈ ℂ) |
132 | 54, 131 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐷 ∈ ℂ) |
133 | 132 | adantlr 712 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑘 ∈ 𝐵) → 𝐷 ∈ ℂ) |
134 | 108, 133 | syldan 591 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐷 ∈ ℂ) |
135 | 102, 130,
106, 134 | fsumsplit 15451 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷 = (Σ𝑘 ∈ 𝑦 𝐷 + Σ𝑘 ∈ {𝑧}𝐷)) |
136 | | nfcv 2909 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑤𝐷 |
137 | | nfcsb1v 3862 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘⦋𝑤 / 𝑘⦌𝐷 |
138 | | csbeq1a 3851 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑤 → 𝐷 = ⦋𝑤 / 𝑘⦌𝐷) |
139 | 136, 137,
138 | cbvsumi 15407 |
. . . . . . . . . . . . . . . 16
⊢
Σ𝑘 ∈
{𝑧}𝐷 = Σ𝑤 ∈ {𝑧}⦋𝑤 / 𝑘⦌𝐷 |
140 | 133 | ralrimiva 3110 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑘 ∈ 𝐵 𝐷 ∈ ℂ) |
141 | 90 | nfel1 2925 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐷 ∈ ℂ |
142 | 93 | eleq1d 2825 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑧 → (𝐷 ∈ ℂ ↔ ⦋𝑧 / 𝑘⦌𝐷 ∈ ℂ)) |
143 | 141, 142 | rspc 3548 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝐵 → (∀𝑘 ∈ 𝐵 𝐷 ∈ ℂ → ⦋𝑧 / 𝑘⦌𝐷 ∈ ℂ)) |
144 | 50, 140, 143 | sylc 65 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ⦋𝑧 / 𝑘⦌𝐷 ∈ ℂ) |
145 | | csbeq1 3840 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑧 → ⦋𝑤 / 𝑘⦌𝐷 = ⦋𝑧 / 𝑘⦌𝐷) |
146 | 145 | sumsn 15456 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ 𝐵 ∧ ⦋𝑧 / 𝑘⦌𝐷 ∈ ℂ) → Σ𝑤 ∈ {𝑧}⦋𝑤 / 𝑘⦌𝐷 = ⦋𝑧 / 𝑘⦌𝐷) |
147 | 50, 144, 146 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → Σ𝑤 ∈ {𝑧}⦋𝑤 / 𝑘⦌𝐷 = ⦋𝑧 / 𝑘⦌𝐷) |
148 | 139, 147 | eqtrid 2792 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → Σ𝑘 ∈ {𝑧}𝐷 = ⦋𝑧 / 𝑘⦌𝐷) |
149 | 148 | oveq2d 7287 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (Σ𝑘 ∈ 𝑦 𝐷 + Σ𝑘 ∈ {𝑧}𝐷) = (Σ𝑘 ∈ 𝑦 𝐷 + ⦋𝑧 / 𝑘⦌𝐷)) |
150 | 135, 149 | eqtrd 2780 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷 = (Σ𝑘 ∈ 𝑦 𝐷 + ⦋𝑧 / 𝑘⦌𝐷)) |
151 | 150 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷 = (Σ𝑘 ∈ 𝑦 𝐷 + ⦋𝑧 / 𝑘⦌𝐷)) |
152 | 99, 129, 151 | 3brtr4d 5111 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷) |
153 | 152 | ex 413 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷)) |
154 | 153 | expr 457 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷))) |
155 | 154 | a2d 29 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) → (((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷))) |
156 | 43, 155 | syl5 34 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) → ((𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷))) |
157 | 156 | expcom 414 |
. . . . . 6
⊢ (¬
𝑧 ∈ 𝑦 → (𝜑 → ((𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷)))) |
158 | 157 | a2d 29 |
. . . . 5
⊢ (¬
𝑧 ∈ 𝑦 → ((𝜑 → (𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷)) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷)))) |
159 | 158 | adantl 482 |
. . . 4
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((𝜑 → (𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷)) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷)))) |
160 | 13, 20, 27, 34, 39, 159 | findcard2s 8930 |
. . 3
⊢ (𝐵 ∈ Fin → (𝜑 → (𝐵 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝐵 𝐷))) |
161 | 2, 160 | mpcom 38 |
. 2
⊢ (𝜑 → (𝐵 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝐵 𝐷)) |
162 | 1, 161 | mpi 20 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝐵 𝐷) |