| Step | Hyp | Ref
| Expression |
| 1 | | ssid 4006 |
. 2
⊢ 𝐵 ⊆ 𝐵 |
| 2 | | fsumrlim.2 |
. . 3
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 3 | | sseq1 4009 |
. . . . . 6
⊢ (𝑤 = ∅ → (𝑤 ⊆ 𝐵 ↔ ∅ ⊆ 𝐵)) |
| 4 | | sumeq1 15725 |
. . . . . . . . 9
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑘 ∈ ∅ 𝐶) |
| 5 | | sum0 15757 |
. . . . . . . . 9
⊢
Σ𝑘 ∈
∅ 𝐶 =
0 |
| 6 | 4, 5 | eqtrdi 2793 |
. . . . . . . 8
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 𝐶 = 0) |
| 7 | 6 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑤 = ∅ → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ 0)) |
| 8 | | sumeq1 15725 |
. . . . . . . 8
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 𝐷 = Σ𝑘 ∈ ∅ 𝐷) |
| 9 | | sum0 15757 |
. . . . . . . 8
⊢
Σ𝑘 ∈
∅ 𝐷 =
0 |
| 10 | 8, 9 | eqtrdi 2793 |
. . . . . . 7
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 𝐷 = 0) |
| 11 | 7, 10 | breq12d 5156 |
. . . . . 6
⊢ (𝑤 = ∅ → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷 ↔ (𝑥 ∈ 𝐴 ↦ 0) ⇝𝑟
0)) |
| 12 | 3, 11 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = ∅ → ((𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷) ↔ (∅ ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 0) ⇝𝑟
0))) |
| 13 | 12 | imbi2d 340 |
. . . 4
⊢ (𝑤 = ∅ → ((𝜑 → (𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷)) ↔ (𝜑 → (∅ ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 0) ⇝𝑟
0)))) |
| 14 | | sseq1 4009 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝑤 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐵)) |
| 15 | | sumeq1 15725 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑘 ∈ 𝑦 𝐶) |
| 16 | 15 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶)) |
| 17 | | sumeq1 15725 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → Σ𝑘 ∈ 𝑤 𝐷 = Σ𝑘 ∈ 𝑦 𝐷) |
| 18 | 16, 17 | breq12d 5156 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷 ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷)) |
| 19 | 14, 18 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = 𝑦 → ((𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷) ↔ (𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷))) |
| 20 | 19 | imbi2d 340 |
. . . 4
⊢ (𝑤 = 𝑦 → ((𝜑 → (𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷)) ↔ (𝜑 → (𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷)))) |
| 21 | | sseq1 4009 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 ⊆ 𝐵 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) |
| 22 | | sumeq1 15725 |
. . . . . . . 8
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) |
| 23 | 22 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)) |
| 24 | | sumeq1 15725 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘 ∈ 𝑤 𝐷 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷) |
| 25 | 23, 24 | breq12d 5156 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷 ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷)) |
| 26 | 21, 25 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷))) |
| 27 | 26 | imbi2d 340 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷)) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷)))) |
| 28 | | sseq1 4009 |
. . . . . 6
⊢ (𝑤 = 𝐵 → (𝑤 ⊆ 𝐵 ↔ 𝐵 ⊆ 𝐵)) |
| 29 | | sumeq1 15725 |
. . . . . . . 8
⊢ (𝑤 = 𝐵 → Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| 30 | 29 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶)) |
| 31 | | sumeq1 15725 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → Σ𝑘 ∈ 𝑤 𝐷 = Σ𝑘 ∈ 𝐵 𝐷) |
| 32 | 30, 31 | breq12d 5156 |
. . . . . 6
⊢ (𝑤 = 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷 ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝐵 𝐷)) |
| 33 | 28, 32 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = 𝐵 → ((𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷) ↔ (𝐵 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝐵 𝐷))) |
| 34 | 33 | imbi2d 340 |
. . . 4
⊢ (𝑤 = 𝐵 → ((𝜑 → (𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑤 𝐷)) ↔ (𝜑 → (𝐵 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝐵 𝐷)))) |
| 35 | | fsumrlim.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 36 | | 0cn 11253 |
. . . . . 6
⊢ 0 ∈
ℂ |
| 37 | | rlimconst 15580 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 0 ∈
ℂ) → (𝑥 ∈
𝐴 ↦ 0)
⇝𝑟 0) |
| 38 | 35, 36, 37 | sylancl 586 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 0) ⇝𝑟
0) |
| 39 | 38 | a1d 25 |
. . . 4
⊢ (𝜑 → (∅ ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 0) ⇝𝑟
0)) |
| 40 | | ssun1 4178 |
. . . . . . . . . 10
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) |
| 41 | | sstr 3992 |
. . . . . . . . . 10
⊢ ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵) → 𝑦 ⊆ 𝐵) |
| 42 | 40, 41 | mpan 690 |
. . . . . . . . 9
⊢ ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → 𝑦 ⊆ 𝐵) |
| 43 | 42 | imim1i 63 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷)) |
| 44 | | sumex 15724 |
. . . . . . . . . . . . . 14
⊢
Σ𝑘 ∈
𝑦 ⦋𝑤 / 𝑥⦌𝐶 ∈ V |
| 45 | 44 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) ∧ 𝑤 ∈ 𝐴) → Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶 ∈ V) |
| 46 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∪ {𝑧}) ⊆ 𝐵) |
| 47 | 46 | unssbd 4194 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → {𝑧} ⊆ 𝐵) |
| 48 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑧 ∈ V |
| 49 | 48 | snss 4785 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝐵 ↔ {𝑧} ⊆ 𝐵) |
| 50 | 47, 49 | sylibr 234 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝑧 ∈ 𝐵) |
| 51 | 50 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝑧 ∈ 𝐵) |
| 52 | | fsumrlim.3 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ 𝑉) |
| 53 | 52 | anass1rs 655 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
| 54 | | fsumrlim.4 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) |
| 55 | 53, 54 | rlimmptrcl 15644 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 56 | 55 | an32s 652 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 57 | 56 | adantllr 719 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 58 | 57 | ralrimiva 3146 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
| 59 | | nfcsb1v 3923 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐶 |
| 60 | 59 | nfel1 2922 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ |
| 61 | | csbeq1a 3913 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑧 → 𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
| 62 | 61 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑧 → (𝐶 ∈ ℂ ↔ ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ)) |
| 63 | 60, 62 | rspc 3610 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝐵 → (∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ → ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ)) |
| 64 | 51, 58, 63 | sylc 65 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) |
| 65 | 64 | ralrimiva 3146 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑥 ∈ 𝐴 ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) |
| 66 | 65 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → ∀𝑥 ∈ 𝐴 ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) |
| 67 | | nfcsb1v 3923 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 |
| 68 | 67 | nfel1 2922 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ |
| 69 | | csbeq1a 3913 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑤 → ⦋𝑧 / 𝑘⦌𝐶 = ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) |
| 70 | 69 | eleq1d 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑤 → (⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ ↔ ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ)) |
| 71 | 68, 70 | rspc 3610 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ → ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ)) |
| 72 | 66, 71 | mpan9 506 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) ∧ 𝑤 ∈ 𝐴) → ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) |
| 73 | 72 | elexd 3504 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) ∧ 𝑤 ∈ 𝐴) → ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶 ∈ V) |
| 74 | | nfcv 2905 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑤Σ𝑘 ∈ 𝑦 𝐶 |
| 75 | | nfcv 2905 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥𝑦 |
| 76 | | nfcsb1v 3923 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝐶 |
| 77 | 75, 76 | nfsum 15727 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶 |
| 78 | | csbeq1a 3913 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑤 → 𝐶 = ⦋𝑤 / 𝑥⦌𝐶) |
| 79 | 78 | sumeq2sdv 15739 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑤 → Σ𝑘 ∈ 𝑦 𝐶 = Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶) |
| 80 | 74, 77, 79 | cbvmpt 5253 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) = (𝑤 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶) |
| 81 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) |
| 82 | 80, 81 | eqbrtrrid 5179 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → (𝑤 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) |
| 83 | | nfcv 2905 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑤⦋𝑧 / 𝑘⦌𝐶 |
| 84 | 83, 67, 69 | cbvmpt 5253 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) = (𝑤 ∈ 𝐴 ↦ ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) |
| 85 | 54 | ralrimiva 3146 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑘 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) |
| 86 | 85 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑘 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷) |
| 87 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘𝐴 |
| 88 | 87, 59 | nfmpt 5249 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘(𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) |
| 89 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘
⇝𝑟 |
| 90 | | nfcsb1v 3923 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐷 |
| 91 | 88, 89, 90 | nfbr 5190 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ⇝𝑟
⦋𝑧 / 𝑘⦌𝐷 |
| 92 | 61 | mpteq2dv 5244 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑧 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶)) |
| 93 | | csbeq1a 3913 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑧 → 𝐷 = ⦋𝑧 / 𝑘⦌𝐷) |
| 94 | 92, 93 | breq12d 5156 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷 ↔ (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ⇝𝑟
⦋𝑧 / 𝑘⦌𝐷)) |
| 95 | 91, 94 | rspc 3610 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝐵 → (∀𝑘 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷 → (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ⇝𝑟
⦋𝑧 / 𝑘⦌𝐷)) |
| 96 | 50, 86, 95 | sylc 65 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ⇝𝑟
⦋𝑧 / 𝑘⦌𝐷) |
| 97 | 96 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ⇝𝑟
⦋𝑧 / 𝑘⦌𝐷) |
| 98 | 84, 97 | eqbrtrrid 5179 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → (𝑤 ∈ 𝐴 ↦ ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) ⇝𝑟
⦋𝑧 / 𝑘⦌𝐷) |
| 99 | 45, 73, 82, 98 | rlimadd 15679 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → (𝑤 ∈ 𝐴 ↦ (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶 + ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶)) ⇝𝑟 (Σ𝑘 ∈ 𝑦 𝐷 + ⦋𝑧 / 𝑘⦌𝐷)) |
| 100 | | simprl 771 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ¬ 𝑧 ∈ 𝑦) |
| 101 | | disjsn 4711 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
| 102 | 100, 101 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∩ {𝑧}) = ∅) |
| 103 | 102 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∩ {𝑧}) = ∅) |
| 104 | | eqidd 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧})) |
| 105 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝐵 ∈ Fin) |
| 106 | 105, 46 | ssfid 9301 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 107 | 106 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 108 | 46 | sselda 3983 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘 ∈ 𝐵) |
| 109 | 108 | adantlr 715 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘 ∈ 𝐵) |
| 110 | 109, 57 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐶 ∈ ℂ) |
| 111 | 103, 104,
107, 110 | fsumsplit 15777 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (Σ𝑘 ∈ 𝑦 𝐶 + Σ𝑘 ∈ {𝑧}𝐶)) |
| 112 | | csbeq1a 3913 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑤 → 𝐶 = ⦋𝑤 / 𝑘⦌𝐶) |
| 113 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑤𝐶 |
| 114 | | nfcsb1v 3923 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘⦋𝑤 / 𝑘⦌𝐶 |
| 115 | 112, 113,
114 | cbvsum 15731 |
. . . . . . . . . . . . . . . . . 18
⊢
Σ𝑘 ∈
{𝑧}𝐶 = Σ𝑤 ∈ {𝑧}⦋𝑤 / 𝑘⦌𝐶 |
| 116 | | csbeq1 3902 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑧 → ⦋𝑤 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
| 117 | 116 | sumsn 15782 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ 𝐵 ∧ ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) → Σ𝑤 ∈ {𝑧}⦋𝑤 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
| 118 | 51, 64, 117 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑤 ∈ {𝑧}⦋𝑤 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
| 119 | 115, 118 | eqtrid 2789 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ {𝑧}𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
| 120 | 119 | oveq2d 7447 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (Σ𝑘 ∈ 𝑦 𝐶 + Σ𝑘 ∈ {𝑧}𝐶) = (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) |
| 121 | 111, 120 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) |
| 122 | 121 | mpteq2dva 5242 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = (𝑥 ∈ 𝐴 ↦ (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶))) |
| 123 | 122 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = (𝑥 ∈ 𝐴 ↦ (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶))) |
| 124 | | nfcv 2905 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑤(Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶) |
| 125 | | nfcv 2905 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥
+ |
| 126 | 77, 125, 67 | nfov 7461 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥(Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶 + ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶) |
| 127 | 79, 69 | oveq12d 7449 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶) = (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶 + ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶)) |
| 128 | 124, 126,
127 | cbvmpt 5253 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐴 ↦ (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) = (𝑤 ∈ 𝐴 ↦ (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶 + ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶)) |
| 129 | 123, 128 | eqtrdi 2793 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = (𝑤 ∈ 𝐴 ↦ (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐶 + ⦋𝑤 / 𝑥⦌⦋𝑧 / 𝑘⦌𝐶))) |
| 130 | | eqidd 2738 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧})) |
| 131 | | rlimcl 15539 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ⇝𝑟 𝐷 → 𝐷 ∈ ℂ) |
| 132 | 54, 131 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐷 ∈ ℂ) |
| 133 | 132 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑘 ∈ 𝐵) → 𝐷 ∈ ℂ) |
| 134 | 108, 133 | syldan 591 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐷 ∈ ℂ) |
| 135 | 102, 130,
106, 134 | fsumsplit 15777 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷 = (Σ𝑘 ∈ 𝑦 𝐷 + Σ𝑘 ∈ {𝑧}𝐷)) |
| 136 | | csbeq1a 3913 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑤 → 𝐷 = ⦋𝑤 / 𝑘⦌𝐷) |
| 137 | | nfcv 2905 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑤𝐷 |
| 138 | | nfcsb1v 3923 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘⦋𝑤 / 𝑘⦌𝐷 |
| 139 | 136, 137,
138 | cbvsum 15731 |
. . . . . . . . . . . . . . . 16
⊢
Σ𝑘 ∈
{𝑧}𝐷 = Σ𝑤 ∈ {𝑧}⦋𝑤 / 𝑘⦌𝐷 |
| 140 | 133 | ralrimiva 3146 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑘 ∈ 𝐵 𝐷 ∈ ℂ) |
| 141 | 90 | nfel1 2922 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐷 ∈ ℂ |
| 142 | 93 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑧 → (𝐷 ∈ ℂ ↔ ⦋𝑧 / 𝑘⦌𝐷 ∈ ℂ)) |
| 143 | 141, 142 | rspc 3610 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝐵 → (∀𝑘 ∈ 𝐵 𝐷 ∈ ℂ → ⦋𝑧 / 𝑘⦌𝐷 ∈ ℂ)) |
| 144 | 50, 140, 143 | sylc 65 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ⦋𝑧 / 𝑘⦌𝐷 ∈ ℂ) |
| 145 | | csbeq1 3902 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑧 → ⦋𝑤 / 𝑘⦌𝐷 = ⦋𝑧 / 𝑘⦌𝐷) |
| 146 | 145 | sumsn 15782 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ 𝐵 ∧ ⦋𝑧 / 𝑘⦌𝐷 ∈ ℂ) → Σ𝑤 ∈ {𝑧}⦋𝑤 / 𝑘⦌𝐷 = ⦋𝑧 / 𝑘⦌𝐷) |
| 147 | 50, 144, 146 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → Σ𝑤 ∈ {𝑧}⦋𝑤 / 𝑘⦌𝐷 = ⦋𝑧 / 𝑘⦌𝐷) |
| 148 | 139, 147 | eqtrid 2789 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → Σ𝑘 ∈ {𝑧}𝐷 = ⦋𝑧 / 𝑘⦌𝐷) |
| 149 | 148 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (Σ𝑘 ∈ 𝑦 𝐷 + Σ𝑘 ∈ {𝑧}𝐷) = (Σ𝑘 ∈ 𝑦 𝐷 + ⦋𝑧 / 𝑘⦌𝐷)) |
| 150 | 135, 149 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷 = (Σ𝑘 ∈ 𝑦 𝐷 + ⦋𝑧 / 𝑘⦌𝐷)) |
| 151 | 150 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷 = (Σ𝑘 ∈ 𝑦 𝐷 + ⦋𝑧 / 𝑘⦌𝐷)) |
| 152 | 99, 129, 151 | 3brtr4d 5175 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷) |
| 153 | 152 | ex 412 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷)) |
| 154 | 153 | expr 456 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷))) |
| 155 | 154 | a2d 29 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) → (((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷))) |
| 156 | 43, 155 | syl5 34 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) → ((𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷))) |
| 157 | 156 | expcom 413 |
. . . . . 6
⊢ (¬
𝑧 ∈ 𝑦 → (𝜑 → ((𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷)))) |
| 158 | 157 | a2d 29 |
. . . . 5
⊢ (¬
𝑧 ∈ 𝑦 → ((𝜑 → (𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷)) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷)))) |
| 159 | 158 | adantl 481 |
. . . 4
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((𝜑 → (𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝑦 𝐷)) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ⇝𝑟 Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐷)))) |
| 160 | 13, 20, 27, 34, 39, 159 | findcard2s 9205 |
. . 3
⊢ (𝐵 ∈ Fin → (𝜑 → (𝐵 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝐵 𝐷))) |
| 161 | 2, 160 | mpcom 38 |
. 2
⊢ (𝜑 → (𝐵 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝐵 𝐷)) |
| 162 | 1, 161 | mpi 20 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ⇝𝑟 Σ𝑘 ∈ 𝐵 𝐷) |