MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasvscaf Structured version   Visualization version   GIF version

Theorem imasvscaf 17443
Description: The image structure's scalar multiplication is closed in the base set. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasvscaf.u (𝜑𝑈 = (𝐹s 𝑅))
imasvscaf.v (𝜑𝑉 = (Base‘𝑅))
imasvscaf.f (𝜑𝐹:𝑉onto𝐵)
imasvscaf.r (𝜑𝑅𝑍)
imasvscaf.g 𝐺 = (Scalar‘𝑅)
imasvscaf.k 𝐾 = (Base‘𝐺)
imasvscaf.q · = ( ·𝑠𝑅)
imasvscaf.s = ( ·𝑠𝑈)
imasvscaf.e ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
imasvscaf.c ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
Assertion
Ref Expression
imasvscaf (𝜑 :(𝐾 × 𝐵)⟶𝐵)
Distinct variable groups:   𝑝,𝑎,𝑞,𝐹   𝐾,𝑎,𝑝,𝑞   𝜑,𝑎,𝑝,𝑞   𝐵,𝑝,𝑞   𝑅,𝑝,𝑞   · ,𝑝,𝑞   ,𝑎,𝑝,𝑞   𝑉,𝑎,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)   · (𝑎)   𝑈(𝑞,𝑝,𝑎)   𝐺(𝑞,𝑝,𝑎)   𝑍(𝑞,𝑝,𝑎)

Proof of Theorem imasvscaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imasvscaf.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasvscaf.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 imasvscaf.f . . 3 (𝜑𝐹:𝑉onto𝐵)
4 imasvscaf.r . . 3 (𝜑𝑅𝑍)
5 imasvscaf.g . . 3 𝐺 = (Scalar‘𝑅)
6 imasvscaf.k . . 3 𝐾 = (Base‘𝐺)
7 imasvscaf.q . . 3 · = ( ·𝑠𝑅)
8 imasvscaf.s . . 3 = ( ·𝑠𝑈)
9 imasvscaf.e . . 3 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
101, 2, 3, 4, 5, 6, 7, 8, 9imasvscafn 17441 . 2 (𝜑 Fn (𝐾 × 𝐵))
111, 2, 3, 4, 5, 6, 7, 8imasvsca 17424 . . 3 (𝜑 = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
12 imasvscaf.c . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
13 fof 6736 . . . . . . . . . . . . . 14 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
143, 13syl 17 . . . . . . . . . . . . 13 (𝜑𝐹:𝑉𝐵)
1514ffvelcdmda 7018 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝 · 𝑞) ∈ 𝑉) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1612, 15syldan 591 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1716ralrimivw 3125 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → ∀𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1817anass1rs 655 . . . . . . . . 9 (((𝜑𝑞𝑉) ∧ 𝑝𝐾) → ∀𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1918ralrimiva 3121 . . . . . . . 8 ((𝜑𝑞𝑉) → ∀𝑝𝐾𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
20 eqid 2729 . . . . . . . . 9 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
2120fmpo 8003 . . . . . . . 8 (∀𝑝𝐾𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵 ↔ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶𝐵)
2219, 21sylib 218 . . . . . . 7 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶𝐵)
23 fssxp 6679 . . . . . . 7 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶𝐵 → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × 𝐵))
2422, 23syl 17 . . . . . 6 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × 𝐵))
2514ffvelcdmda 7018 . . . . . . . 8 ((𝜑𝑞𝑉) → (𝐹𝑞) ∈ 𝐵)
2625snssd 4760 . . . . . . 7 ((𝜑𝑞𝑉) → {(𝐹𝑞)} ⊆ 𝐵)
27 xpss2 5639 . . . . . . 7 ({(𝐹𝑞)} ⊆ 𝐵 → (𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵))
28 xpss1 5638 . . . . . . 7 ((𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵) → ((𝐾 × {(𝐹𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵))
2926, 27, 283syl 18 . . . . . 6 ((𝜑𝑞𝑉) → ((𝐾 × {(𝐹𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵))
3024, 29sstrd 3946 . . . . 5 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
3130ralrimiva 3121 . . . 4 (𝜑 → ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
32 iunss 4994 . . . 4 ( 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵) ↔ ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
3331, 32sylibr 234 . . 3 (𝜑 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
3411, 33eqsstrd 3970 . 2 (𝜑 ⊆ ((𝐾 × 𝐵) × 𝐵))
35 dff2 7033 . 2 ( :(𝐾 × 𝐵)⟶𝐵 ↔ ( Fn (𝐾 × 𝐵) ∧ ⊆ ((𝐾 × 𝐵) × 𝐵)))
3610, 34, 35sylanbrc 583 1 (𝜑 :(𝐾 × 𝐵)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3903  {csn 4577   ciun 4941   × cxp 5617   Fn wfn 6477  wf 6478  ontowfo 6480  cfv 6482  (class class class)co 7349  cmpo 7351  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  s cimas 17408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-imas 17412
This theorem is referenced by:  imaslmod  33290
  Copyright terms: Public domain W3C validator