![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imasvscaf | Structured version Visualization version GIF version |
Description: The image structure's scalar multiplication is closed in the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
imasvscaf.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasvscaf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasvscaf.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
imasvscaf.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
imasvscaf.g | ⊢ 𝐺 = (Scalar‘𝑅) |
imasvscaf.k | ⊢ 𝐾 = (Base‘𝐺) |
imasvscaf.q | ⊢ · = ( ·𝑠 ‘𝑅) |
imasvscaf.s | ⊢ ∙ = ( ·𝑠 ‘𝑈) |
imasvscaf.e | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) |
imasvscaf.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
Ref | Expression |
---|---|
imasvscaf | ⊢ (𝜑 → ∙ :(𝐾 × 𝐵)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasvscaf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imasvscaf.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imasvscaf.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
4 | imasvscaf.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
5 | imasvscaf.g | . . 3 ⊢ 𝐺 = (Scalar‘𝑅) | |
6 | imasvscaf.k | . . 3 ⊢ 𝐾 = (Base‘𝐺) | |
7 | imasvscaf.q | . . 3 ⊢ · = ( ·𝑠 ‘𝑅) | |
8 | imasvscaf.s | . . 3 ⊢ ∙ = ( ·𝑠 ‘𝑈) | |
9 | imasvscaf.e | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | imasvscafn 16639 | . 2 ⊢ (𝜑 → ∙ Fn (𝐾 × 𝐵)) |
11 | 1, 2, 3, 4, 5, 6, 7, 8 | imasvsca 16622 | . . 3 ⊢ (𝜑 → ∙ = ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) |
12 | imasvscaf.c | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
13 | fof 6458 | . . . . . . . . . . . . . 14 ⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) | |
14 | 3, 13 | syl 17 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
15 | 14 | ffvelrnda 6716 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝑝 · 𝑞) ∈ 𝑉) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
16 | 12, 15 | syldan 591 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
17 | 16 | ralrimivw 3150 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
18 | 17 | anass1rs 651 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ 𝑉) ∧ 𝑝 ∈ 𝐾) → ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
19 | 18 | ralrimiva 3149 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → ∀𝑝 ∈ 𝐾 ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
20 | eqid 2795 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) | |
21 | 20 | fmpo 7622 | . . . . . . . 8 ⊢ (∀𝑝 ∈ 𝐾 ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵 ↔ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹‘𝑞)})⟶𝐵) |
22 | 19, 21 | sylib 219 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹‘𝑞)})⟶𝐵) |
23 | fssxp 6402 | . . . . . . 7 ⊢ ((𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹‘𝑞)})⟶𝐵 → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹‘𝑞)}) × 𝐵)) | |
24 | 22, 23 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹‘𝑞)}) × 𝐵)) |
25 | 14 | ffvelrnda 6716 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝐹‘𝑞) ∈ 𝐵) |
26 | 25 | snssd 4649 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → {(𝐹‘𝑞)} ⊆ 𝐵) |
27 | xpss2 5463 | . . . . . . 7 ⊢ ({(𝐹‘𝑞)} ⊆ 𝐵 → (𝐾 × {(𝐹‘𝑞)}) ⊆ (𝐾 × 𝐵)) | |
28 | xpss1 5462 | . . . . . . 7 ⊢ ((𝐾 × {(𝐹‘𝑞)}) ⊆ (𝐾 × 𝐵) → ((𝐾 × {(𝐹‘𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵)) | |
29 | 26, 27, 28 | 3syl 18 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → ((𝐾 × {(𝐹‘𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
30 | 24, 29 | sstrd 3899 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
31 | 30 | ralrimiva 3149 | . . . 4 ⊢ (𝜑 → ∀𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
32 | iunss 4868 | . . . 4 ⊢ (∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵) ↔ ∀𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) | |
33 | 31, 32 | sylibr 235 | . . 3 ⊢ (𝜑 → ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
34 | 11, 33 | eqsstrd 3926 | . 2 ⊢ (𝜑 → ∙ ⊆ ((𝐾 × 𝐵) × 𝐵)) |
35 | dff2 6728 | . 2 ⊢ ( ∙ :(𝐾 × 𝐵)⟶𝐵 ↔ ( ∙ Fn (𝐾 × 𝐵) ∧ ∙ ⊆ ((𝐾 × 𝐵) × 𝐵))) | |
36 | 10, 34, 35 | sylanbrc 583 | 1 ⊢ (𝜑 → ∙ :(𝐾 × 𝐵)⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ∀wral 3105 ⊆ wss 3859 {csn 4472 ∪ ciun 4825 × cxp 5441 Fn wfn 6220 ⟶wf 6221 –onto→wfo 6223 ‘cfv 6225 (class class class)co 7016 ∈ cmpo 7018 Basecbs 16312 Scalarcsca 16397 ·𝑠 cvsca 16398 “s cimas 16606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-sup 8752 df-inf 8753 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-z 11830 df-dec 11948 df-uz 12094 df-fz 12743 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-plusg 16407 df-mulr 16408 df-sca 16410 df-vsca 16411 df-ip 16412 df-tset 16413 df-ple 16414 df-ds 16416 df-imas 16610 |
This theorem is referenced by: imaslmod 30576 |
Copyright terms: Public domain | W3C validator |