| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imasvscaf | Structured version Visualization version GIF version | ||
| Description: The image structure's scalar multiplication is closed in the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| imasvscaf.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imasvscaf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imasvscaf.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| imasvscaf.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| imasvscaf.g | ⊢ 𝐺 = (Scalar‘𝑅) |
| imasvscaf.k | ⊢ 𝐾 = (Base‘𝐺) |
| imasvscaf.q | ⊢ · = ( ·𝑠 ‘𝑅) |
| imasvscaf.s | ⊢ ∙ = ( ·𝑠 ‘𝑈) |
| imasvscaf.e | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) |
| imasvscaf.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
| Ref | Expression |
|---|---|
| imasvscaf | ⊢ (𝜑 → ∙ :(𝐾 × 𝐵)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasvscaf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 2 | imasvscaf.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | imasvscaf.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
| 4 | imasvscaf.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 5 | imasvscaf.g | . . 3 ⊢ 𝐺 = (Scalar‘𝑅) | |
| 6 | imasvscaf.k | . . 3 ⊢ 𝐾 = (Base‘𝐺) | |
| 7 | imasvscaf.q | . . 3 ⊢ · = ( ·𝑠 ‘𝑅) | |
| 8 | imasvscaf.s | . . 3 ⊢ ∙ = ( ·𝑠 ‘𝑈) | |
| 9 | imasvscaf.e | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | imasvscafn 17551 | . 2 ⊢ (𝜑 → ∙ Fn (𝐾 × 𝐵)) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8 | imasvsca 17534 | . . 3 ⊢ (𝜑 → ∙ = ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) |
| 12 | imasvscaf.c | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
| 13 | fof 6790 | . . . . . . . . . . . . . 14 ⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) | |
| 14 | 3, 13 | syl 17 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
| 15 | 14 | ffvelcdmda 7074 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝑝 · 𝑞) ∈ 𝑉) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 16 | 12, 15 | syldan 591 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 17 | 16 | ralrimivw 3136 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 18 | 17 | anass1rs 655 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ 𝑉) ∧ 𝑝 ∈ 𝐾) → ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 19 | 18 | ralrimiva 3132 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → ∀𝑝 ∈ 𝐾 ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 20 | eqid 2735 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) | |
| 21 | 20 | fmpo 8067 | . . . . . . . 8 ⊢ (∀𝑝 ∈ 𝐾 ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵 ↔ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹‘𝑞)})⟶𝐵) |
| 22 | 19, 21 | sylib 218 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹‘𝑞)})⟶𝐵) |
| 23 | fssxp 6733 | . . . . . . 7 ⊢ ((𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹‘𝑞)})⟶𝐵 → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹‘𝑞)}) × 𝐵)) | |
| 24 | 22, 23 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹‘𝑞)}) × 𝐵)) |
| 25 | 14 | ffvelcdmda 7074 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝐹‘𝑞) ∈ 𝐵) |
| 26 | 25 | snssd 4785 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → {(𝐹‘𝑞)} ⊆ 𝐵) |
| 27 | xpss2 5674 | . . . . . . 7 ⊢ ({(𝐹‘𝑞)} ⊆ 𝐵 → (𝐾 × {(𝐹‘𝑞)}) ⊆ (𝐾 × 𝐵)) | |
| 28 | xpss1 5673 | . . . . . . 7 ⊢ ((𝐾 × {(𝐹‘𝑞)}) ⊆ (𝐾 × 𝐵) → ((𝐾 × {(𝐹‘𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵)) | |
| 29 | 26, 27, 28 | 3syl 18 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → ((𝐾 × {(𝐹‘𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 30 | 24, 29 | sstrd 3969 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 31 | 30 | ralrimiva 3132 | . . . 4 ⊢ (𝜑 → ∀𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 32 | iunss 5021 | . . . 4 ⊢ (∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵) ↔ ∀𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) | |
| 33 | 31, 32 | sylibr 234 | . . 3 ⊢ (𝜑 → ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 34 | 11, 33 | eqsstrd 3993 | . 2 ⊢ (𝜑 → ∙ ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 35 | dff2 7089 | . 2 ⊢ ( ∙ :(𝐾 × 𝐵)⟶𝐵 ↔ ( ∙ Fn (𝐾 × 𝐵) ∧ ∙ ⊆ ((𝐾 × 𝐵) × 𝐵))) | |
| 36 | 10, 34, 35 | sylanbrc 583 | 1 ⊢ (𝜑 → ∙ :(𝐾 × 𝐵)⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 {csn 4601 ∪ ciun 4967 × cxp 5652 Fn wfn 6526 ⟶wf 6527 –onto→wfo 6529 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 Basecbs 17228 Scalarcsca 17274 ·𝑠 cvsca 17275 “s cimas 17518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-imas 17522 |
| This theorem is referenced by: imaslmod 33368 |
| Copyright terms: Public domain | W3C validator |