MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasvscaf Structured version   Visualization version   GIF version

Theorem imasvscaf 17421
Description: The image structure's scalar multiplication is closed in the base set. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasvscaf.u (𝜑𝑈 = (𝐹s 𝑅))
imasvscaf.v (𝜑𝑉 = (Base‘𝑅))
imasvscaf.f (𝜑𝐹:𝑉onto𝐵)
imasvscaf.r (𝜑𝑅𝑍)
imasvscaf.g 𝐺 = (Scalar‘𝑅)
imasvscaf.k 𝐾 = (Base‘𝐺)
imasvscaf.q · = ( ·𝑠𝑅)
imasvscaf.s = ( ·𝑠𝑈)
imasvscaf.e ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
imasvscaf.c ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
Assertion
Ref Expression
imasvscaf (𝜑 :(𝐾 × 𝐵)⟶𝐵)
Distinct variable groups:   𝑝,𝑎,𝑞,𝐹   𝐾,𝑎,𝑝,𝑞   𝜑,𝑎,𝑝,𝑞   𝐵,𝑝,𝑞   𝑅,𝑝,𝑞   · ,𝑝,𝑞   ,𝑎,𝑝,𝑞   𝑉,𝑎,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)   · (𝑎)   𝑈(𝑞,𝑝,𝑎)   𝐺(𝑞,𝑝,𝑎)   𝑍(𝑞,𝑝,𝑎)

Proof of Theorem imasvscaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imasvscaf.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasvscaf.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 imasvscaf.f . . 3 (𝜑𝐹:𝑉onto𝐵)
4 imasvscaf.r . . 3 (𝜑𝑅𝑍)
5 imasvscaf.g . . 3 𝐺 = (Scalar‘𝑅)
6 imasvscaf.k . . 3 𝐾 = (Base‘𝐺)
7 imasvscaf.q . . 3 · = ( ·𝑠𝑅)
8 imasvscaf.s . . 3 = ( ·𝑠𝑈)
9 imasvscaf.e . . 3 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
101, 2, 3, 4, 5, 6, 7, 8, 9imasvscafn 17419 . 2 (𝜑 Fn (𝐾 × 𝐵))
111, 2, 3, 4, 5, 6, 7, 8imasvsca 17402 . . 3 (𝜑 = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
12 imasvscaf.c . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
13 fof 6756 . . . . . . . . . . . . . 14 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
143, 13syl 17 . . . . . . . . . . . . 13 (𝜑𝐹:𝑉𝐵)
1514ffvelcdmda 7035 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝 · 𝑞) ∈ 𝑉) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1612, 15syldan 591 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1716ralrimivw 3147 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → ∀𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1817anass1rs 653 . . . . . . . . 9 (((𝜑𝑞𝑉) ∧ 𝑝𝐾) → ∀𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1918ralrimiva 3143 . . . . . . . 8 ((𝜑𝑞𝑉) → ∀𝑝𝐾𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
20 eqid 2736 . . . . . . . . 9 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
2120fmpo 8000 . . . . . . . 8 (∀𝑝𝐾𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵 ↔ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶𝐵)
2219, 21sylib 217 . . . . . . 7 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶𝐵)
23 fssxp 6696 . . . . . . 7 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶𝐵 → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × 𝐵))
2422, 23syl 17 . . . . . 6 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × 𝐵))
2514ffvelcdmda 7035 . . . . . . . 8 ((𝜑𝑞𝑉) → (𝐹𝑞) ∈ 𝐵)
2625snssd 4769 . . . . . . 7 ((𝜑𝑞𝑉) → {(𝐹𝑞)} ⊆ 𝐵)
27 xpss2 5653 . . . . . . 7 ({(𝐹𝑞)} ⊆ 𝐵 → (𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵))
28 xpss1 5652 . . . . . . 7 ((𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵) → ((𝐾 × {(𝐹𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵))
2926, 27, 283syl 18 . . . . . 6 ((𝜑𝑞𝑉) → ((𝐾 × {(𝐹𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵))
3024, 29sstrd 3954 . . . . 5 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
3130ralrimiva 3143 . . . 4 (𝜑 → ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
32 iunss 5005 . . . 4 ( 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵) ↔ ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
3331, 32sylibr 233 . . 3 (𝜑 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
3411, 33eqsstrd 3982 . 2 (𝜑 ⊆ ((𝐾 × 𝐵) × 𝐵))
35 dff2 7049 . 2 ( :(𝐾 × 𝐵)⟶𝐵 ↔ ( Fn (𝐾 × 𝐵) ∧ ⊆ ((𝐾 × 𝐵) × 𝐵)))
3610, 34, 35sylanbrc 583 1 (𝜑 :(𝐾 × 𝐵)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wss 3910  {csn 4586   ciun 4954   × cxp 5631   Fn wfn 6491  wf 6492  ontowfo 6494  cfv 6496  (class class class)co 7357  cmpo 7359  Basecbs 17083  Scalarcsca 17136   ·𝑠 cvsca 17137  s cimas 17386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-imas 17390
This theorem is referenced by:  imaslmod  32145
  Copyright terms: Public domain W3C validator