MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasvscaf Structured version   Visualization version   GIF version

Theorem imasvscaf 16806
Description: The image structure's scalar multiplication is closed in the base set. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasvscaf.u (𝜑𝑈 = (𝐹s 𝑅))
imasvscaf.v (𝜑𝑉 = (Base‘𝑅))
imasvscaf.f (𝜑𝐹:𝑉onto𝐵)
imasvscaf.r (𝜑𝑅𝑍)
imasvscaf.g 𝐺 = (Scalar‘𝑅)
imasvscaf.k 𝐾 = (Base‘𝐺)
imasvscaf.q · = ( ·𝑠𝑅)
imasvscaf.s = ( ·𝑠𝑈)
imasvscaf.e ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
imasvscaf.c ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
Assertion
Ref Expression
imasvscaf (𝜑 :(𝐾 × 𝐵)⟶𝐵)
Distinct variable groups:   𝑝,𝑎,𝑞,𝐹   𝐾,𝑎,𝑝,𝑞   𝜑,𝑎,𝑝,𝑞   𝐵,𝑝,𝑞   𝑅,𝑝,𝑞   · ,𝑝,𝑞   ,𝑎,𝑝,𝑞   𝑉,𝑎,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)   · (𝑎)   𝑈(𝑞,𝑝,𝑎)   𝐺(𝑞,𝑝,𝑎)   𝑍(𝑞,𝑝,𝑎)

Proof of Theorem imasvscaf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imasvscaf.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasvscaf.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 imasvscaf.f . . 3 (𝜑𝐹:𝑉onto𝐵)
4 imasvscaf.r . . 3 (𝜑𝑅𝑍)
5 imasvscaf.g . . 3 𝐺 = (Scalar‘𝑅)
6 imasvscaf.k . . 3 𝐾 = (Base‘𝐺)
7 imasvscaf.q . . 3 · = ( ·𝑠𝑅)
8 imasvscaf.s . . 3 = ( ·𝑠𝑈)
9 imasvscaf.e . . 3 ((𝜑 ∧ (𝑝𝐾𝑎𝑉𝑞𝑉)) → ((𝐹𝑎) = (𝐹𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞))))
101, 2, 3, 4, 5, 6, 7, 8, 9imasvscafn 16804 . 2 (𝜑 Fn (𝐾 × 𝐵))
111, 2, 3, 4, 5, 6, 7, 8imasvsca 16787 . . 3 (𝜑 = 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))))
12 imasvscaf.c . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
13 fof 6585 . . . . . . . . . . . . . 14 (𝐹:𝑉onto𝐵𝐹:𝑉𝐵)
143, 13syl 17 . . . . . . . . . . . . 13 (𝜑𝐹:𝑉𝐵)
1514ffvelrnda 6846 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑝 · 𝑞) ∈ 𝑉) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1612, 15syldan 593 . . . . . . . . . . 11 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1716ralrimivw 3183 . . . . . . . . . 10 ((𝜑 ∧ (𝑝𝐾𝑞𝑉)) → ∀𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1817anass1rs 653 . . . . . . . . 9 (((𝜑𝑞𝑉) ∧ 𝑝𝐾) → ∀𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
1918ralrimiva 3182 . . . . . . . 8 ((𝜑𝑞𝑉) → ∀𝑝𝐾𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵)
20 eqid 2821 . . . . . . . . 9 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))
2120fmpo 7760 . . . . . . . 8 (∀𝑝𝐾𝑥 ∈ {(𝐹𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵 ↔ (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶𝐵)
2219, 21sylib 220 . . . . . . 7 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶𝐵)
23 fssxp 6529 . . . . . . 7 ((𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹𝑞)})⟶𝐵 → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × 𝐵))
2422, 23syl 17 . . . . . 6 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹𝑞)}) × 𝐵))
2514ffvelrnda 6846 . . . . . . . 8 ((𝜑𝑞𝑉) → (𝐹𝑞) ∈ 𝐵)
2625snssd 4736 . . . . . . 7 ((𝜑𝑞𝑉) → {(𝐹𝑞)} ⊆ 𝐵)
27 xpss2 5570 . . . . . . 7 ({(𝐹𝑞)} ⊆ 𝐵 → (𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵))
28 xpss1 5569 . . . . . . 7 ((𝐾 × {(𝐹𝑞)}) ⊆ (𝐾 × 𝐵) → ((𝐾 × {(𝐹𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵))
2926, 27, 283syl 18 . . . . . 6 ((𝜑𝑞𝑉) → ((𝐾 × {(𝐹𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵))
3024, 29sstrd 3977 . . . . 5 ((𝜑𝑞𝑉) → (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
3130ralrimiva 3182 . . . 4 (𝜑 → ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
32 iunss 4962 . . . 4 ( 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵) ↔ ∀𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
3331, 32sylibr 236 . . 3 (𝜑 𝑞𝑉 (𝑝𝐾, 𝑥 ∈ {(𝐹𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵))
3411, 33eqsstrd 4005 . 2 (𝜑 ⊆ ((𝐾 × 𝐵) × 𝐵))
35 dff2 6860 . 2 ( :(𝐾 × 𝐵)⟶𝐵 ↔ ( Fn (𝐾 × 𝐵) ∧ ⊆ ((𝐾 × 𝐵) × 𝐵)))
3610, 34, 35sylanbrc 585 1 (𝜑 :(𝐾 × 𝐵)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wss 3936  {csn 4561   ciun 4912   × cxp 5548   Fn wfn 6345  wf 6346  ontowfo 6348  cfv 6350  (class class class)co 7150  cmpo 7152  Basecbs 16477  Scalarcsca 16562   ·𝑠 cvsca 16563  s cimas 16771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-imas 16775
This theorem is referenced by:  imaslmod  30917
  Copyright terms: Public domain W3C validator