| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imasvscaf | Structured version Visualization version GIF version | ||
| Description: The image structure's scalar multiplication is closed in the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| imasvscaf.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imasvscaf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imasvscaf.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| imasvscaf.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| imasvscaf.g | ⊢ 𝐺 = (Scalar‘𝑅) |
| imasvscaf.k | ⊢ 𝐾 = (Base‘𝐺) |
| imasvscaf.q | ⊢ · = ( ·𝑠 ‘𝑅) |
| imasvscaf.s | ⊢ ∙ = ( ·𝑠 ‘𝑈) |
| imasvscaf.e | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) |
| imasvscaf.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
| Ref | Expression |
|---|---|
| imasvscaf | ⊢ (𝜑 → ∙ :(𝐾 × 𝐵)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasvscaf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 2 | imasvscaf.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | imasvscaf.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
| 4 | imasvscaf.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 5 | imasvscaf.g | . . 3 ⊢ 𝐺 = (Scalar‘𝑅) | |
| 6 | imasvscaf.k | . . 3 ⊢ 𝐾 = (Base‘𝐺) | |
| 7 | imasvscaf.q | . . 3 ⊢ · = ( ·𝑠 ‘𝑅) | |
| 8 | imasvscaf.s | . . 3 ⊢ ∙ = ( ·𝑠 ‘𝑈) | |
| 9 | imasvscaf.e | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | imasvscafn 17582 | . 2 ⊢ (𝜑 → ∙ Fn (𝐾 × 𝐵)) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8 | imasvsca 17565 | . . 3 ⊢ (𝜑 → ∙ = ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) |
| 12 | imasvscaf.c | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
| 13 | fof 6820 | . . . . . . . . . . . . . 14 ⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) | |
| 14 | 3, 13 | syl 17 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
| 15 | 14 | ffvelcdmda 7104 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝑝 · 𝑞) ∈ 𝑉) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 16 | 12, 15 | syldan 591 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 17 | 16 | ralrimivw 3150 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 18 | 17 | anass1rs 655 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ 𝑉) ∧ 𝑝 ∈ 𝐾) → ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 19 | 18 | ralrimiva 3146 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → ∀𝑝 ∈ 𝐾 ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 20 | eqid 2737 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) | |
| 21 | 20 | fmpo 8093 | . . . . . . . 8 ⊢ (∀𝑝 ∈ 𝐾 ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵 ↔ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹‘𝑞)})⟶𝐵) |
| 22 | 19, 21 | sylib 218 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹‘𝑞)})⟶𝐵) |
| 23 | fssxp 6763 | . . . . . . 7 ⊢ ((𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹‘𝑞)})⟶𝐵 → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹‘𝑞)}) × 𝐵)) | |
| 24 | 22, 23 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹‘𝑞)}) × 𝐵)) |
| 25 | 14 | ffvelcdmda 7104 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝐹‘𝑞) ∈ 𝐵) |
| 26 | 25 | snssd 4809 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → {(𝐹‘𝑞)} ⊆ 𝐵) |
| 27 | xpss2 5705 | . . . . . . 7 ⊢ ({(𝐹‘𝑞)} ⊆ 𝐵 → (𝐾 × {(𝐹‘𝑞)}) ⊆ (𝐾 × 𝐵)) | |
| 28 | xpss1 5704 | . . . . . . 7 ⊢ ((𝐾 × {(𝐹‘𝑞)}) ⊆ (𝐾 × 𝐵) → ((𝐾 × {(𝐹‘𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵)) | |
| 29 | 26, 27, 28 | 3syl 18 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → ((𝐾 × {(𝐹‘𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 30 | 24, 29 | sstrd 3994 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 31 | 30 | ralrimiva 3146 | . . . 4 ⊢ (𝜑 → ∀𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 32 | iunss 5045 | . . . 4 ⊢ (∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵) ↔ ∀𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) | |
| 33 | 31, 32 | sylibr 234 | . . 3 ⊢ (𝜑 → ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 34 | 11, 33 | eqsstrd 4018 | . 2 ⊢ (𝜑 → ∙ ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 35 | dff2 7119 | . 2 ⊢ ( ∙ :(𝐾 × 𝐵)⟶𝐵 ↔ ( ∙ Fn (𝐾 × 𝐵) ∧ ∙ ⊆ ((𝐾 × 𝐵) × 𝐵))) | |
| 36 | 10, 34, 35 | sylanbrc 583 | 1 ⊢ (𝜑 → ∙ :(𝐾 × 𝐵)⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3951 {csn 4626 ∪ ciun 4991 × cxp 5683 Fn wfn 6556 ⟶wf 6557 –onto→wfo 6559 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 Basecbs 17247 Scalarcsca 17300 ·𝑠 cvsca 17301 “s cimas 17549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-imas 17553 |
| This theorem is referenced by: imaslmod 33381 |
| Copyright terms: Public domain | W3C validator |