| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imasvscaf | Structured version Visualization version GIF version | ||
| Description: The image structure's scalar multiplication is closed in the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| imasvscaf.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imasvscaf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imasvscaf.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| imasvscaf.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| imasvscaf.g | ⊢ 𝐺 = (Scalar‘𝑅) |
| imasvscaf.k | ⊢ 𝐾 = (Base‘𝐺) |
| imasvscaf.q | ⊢ · = ( ·𝑠 ‘𝑅) |
| imasvscaf.s | ⊢ ∙ = ( ·𝑠 ‘𝑈) |
| imasvscaf.e | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) |
| imasvscaf.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
| Ref | Expression |
|---|---|
| imasvscaf | ⊢ (𝜑 → ∙ :(𝐾 × 𝐵)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasvscaf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 2 | imasvscaf.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | imasvscaf.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
| 4 | imasvscaf.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 5 | imasvscaf.g | . . 3 ⊢ 𝐺 = (Scalar‘𝑅) | |
| 6 | imasvscaf.k | . . 3 ⊢ 𝐾 = (Base‘𝐺) | |
| 7 | imasvscaf.q | . . 3 ⊢ · = ( ·𝑠 ‘𝑅) | |
| 8 | imasvscaf.s | . . 3 ⊢ ∙ = ( ·𝑠 ‘𝑈) | |
| 9 | imasvscaf.e | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | imasvscafn 17476 | . 2 ⊢ (𝜑 → ∙ Fn (𝐾 × 𝐵)) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8 | imasvsca 17459 | . . 3 ⊢ (𝜑 → ∙ = ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) |
| 12 | imasvscaf.c | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
| 13 | fof 6754 | . . . . . . . . . . . . . 14 ⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) | |
| 14 | 3, 13 | syl 17 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
| 15 | 14 | ffvelcdmda 7038 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝑝 · 𝑞) ∈ 𝑉) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 16 | 12, 15 | syldan 591 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 17 | 16 | ralrimivw 3129 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 18 | 17 | anass1rs 655 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ 𝑉) ∧ 𝑝 ∈ 𝐾) → ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 19 | 18 | ralrimiva 3125 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → ∀𝑝 ∈ 𝐾 ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 20 | eqid 2729 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) | |
| 21 | 20 | fmpo 8026 | . . . . . . . 8 ⊢ (∀𝑝 ∈ 𝐾 ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵 ↔ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹‘𝑞)})⟶𝐵) |
| 22 | 19, 21 | sylib 218 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹‘𝑞)})⟶𝐵) |
| 23 | fssxp 6697 | . . . . . . 7 ⊢ ((𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹‘𝑞)})⟶𝐵 → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹‘𝑞)}) × 𝐵)) | |
| 24 | 22, 23 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹‘𝑞)}) × 𝐵)) |
| 25 | 14 | ffvelcdmda 7038 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝐹‘𝑞) ∈ 𝐵) |
| 26 | 25 | snssd 4769 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → {(𝐹‘𝑞)} ⊆ 𝐵) |
| 27 | xpss2 5651 | . . . . . . 7 ⊢ ({(𝐹‘𝑞)} ⊆ 𝐵 → (𝐾 × {(𝐹‘𝑞)}) ⊆ (𝐾 × 𝐵)) | |
| 28 | xpss1 5650 | . . . . . . 7 ⊢ ((𝐾 × {(𝐹‘𝑞)}) ⊆ (𝐾 × 𝐵) → ((𝐾 × {(𝐹‘𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵)) | |
| 29 | 26, 27, 28 | 3syl 18 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → ((𝐾 × {(𝐹‘𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 30 | 24, 29 | sstrd 3954 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 31 | 30 | ralrimiva 3125 | . . . 4 ⊢ (𝜑 → ∀𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 32 | iunss 5004 | . . . 4 ⊢ (∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵) ↔ ∀𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) | |
| 33 | 31, 32 | sylibr 234 | . . 3 ⊢ (𝜑 → ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 34 | 11, 33 | eqsstrd 3978 | . 2 ⊢ (𝜑 → ∙ ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 35 | dff2 7053 | . 2 ⊢ ( ∙ :(𝐾 × 𝐵)⟶𝐵 ↔ ( ∙ Fn (𝐾 × 𝐵) ∧ ∙ ⊆ ((𝐾 × 𝐵) × 𝐵))) | |
| 36 | 10, 34, 35 | sylanbrc 583 | 1 ⊢ (𝜑 → ∙ :(𝐾 × 𝐵)⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3911 {csn 4585 ∪ ciun 4951 × cxp 5629 Fn wfn 6494 ⟶wf 6495 –onto→wfo 6497 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 Basecbs 17155 Scalarcsca 17199 ·𝑠 cvsca 17200 “s cimas 17443 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-imas 17447 |
| This theorem is referenced by: imaslmod 33297 |
| Copyright terms: Public domain | W3C validator |