| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imasvscaf | Structured version Visualization version GIF version | ||
| Description: The image structure's scalar multiplication is closed in the base set. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| imasvscaf.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imasvscaf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imasvscaf.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| imasvscaf.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| imasvscaf.g | ⊢ 𝐺 = (Scalar‘𝑅) |
| imasvscaf.k | ⊢ 𝐾 = (Base‘𝐺) |
| imasvscaf.q | ⊢ · = ( ·𝑠 ‘𝑅) |
| imasvscaf.s | ⊢ ∙ = ( ·𝑠 ‘𝑈) |
| imasvscaf.e | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) |
| imasvscaf.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
| Ref | Expression |
|---|---|
| imasvscaf | ⊢ (𝜑 → ∙ :(𝐾 × 𝐵)⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasvscaf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 2 | imasvscaf.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | imasvscaf.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
| 4 | imasvscaf.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 5 | imasvscaf.g | . . 3 ⊢ 𝐺 = (Scalar‘𝑅) | |
| 6 | imasvscaf.k | . . 3 ⊢ 𝐾 = (Base‘𝐺) | |
| 7 | imasvscaf.q | . . 3 ⊢ · = ( ·𝑠 ‘𝑅) | |
| 8 | imasvscaf.s | . . 3 ⊢ ∙ = ( ·𝑠 ‘𝑈) | |
| 9 | imasvscaf.e | . . 3 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑎 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → ((𝐹‘𝑎) = (𝐹‘𝑞) → (𝐹‘(𝑝 · 𝑎)) = (𝐹‘(𝑝 · 𝑞)))) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | imasvscafn 17500 | . 2 ⊢ (𝜑 → ∙ Fn (𝐾 × 𝐵)) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8 | imasvsca 17483 | . . 3 ⊢ (𝜑 → ∙ = ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) |
| 12 | imasvscaf.c | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
| 13 | fof 6772 | . . . . . . . . . . . . . 14 ⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) | |
| 14 | 3, 13 | syl 17 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
| 15 | 14 | ffvelcdmda 7056 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ (𝑝 · 𝑞) ∈ 𝑉) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 16 | 12, 15 | syldan 591 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 17 | 16 | ralrimivw 3129 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝐾 ∧ 𝑞 ∈ 𝑉)) → ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 18 | 17 | anass1rs 655 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑞 ∈ 𝑉) ∧ 𝑝 ∈ 𝐾) → ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 19 | 18 | ralrimiva 3125 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → ∀𝑝 ∈ 𝐾 ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵) |
| 20 | eqid 2729 | . . . . . . . . 9 ⊢ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) = (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) | |
| 21 | 20 | fmpo 8047 | . . . . . . . 8 ⊢ (∀𝑝 ∈ 𝐾 ∀𝑥 ∈ {(𝐹‘𝑞)} (𝐹‘(𝑝 · 𝑞)) ∈ 𝐵 ↔ (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹‘𝑞)})⟶𝐵) |
| 22 | 19, 21 | sylib 218 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹‘𝑞)})⟶𝐵) |
| 23 | fssxp 6715 | . . . . . . 7 ⊢ ((𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))):(𝐾 × {(𝐹‘𝑞)})⟶𝐵 → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹‘𝑞)}) × 𝐵)) | |
| 24 | 22, 23 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × {(𝐹‘𝑞)}) × 𝐵)) |
| 25 | 14 | ffvelcdmda 7056 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝐹‘𝑞) ∈ 𝐵) |
| 26 | 25 | snssd 4773 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → {(𝐹‘𝑞)} ⊆ 𝐵) |
| 27 | xpss2 5658 | . . . . . . 7 ⊢ ({(𝐹‘𝑞)} ⊆ 𝐵 → (𝐾 × {(𝐹‘𝑞)}) ⊆ (𝐾 × 𝐵)) | |
| 28 | xpss1 5657 | . . . . . . 7 ⊢ ((𝐾 × {(𝐹‘𝑞)}) ⊆ (𝐾 × 𝐵) → ((𝐾 × {(𝐹‘𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵)) | |
| 29 | 26, 27, 28 | 3syl 18 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → ((𝐾 × {(𝐹‘𝑞)}) × 𝐵) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 30 | 24, 29 | sstrd 3957 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝑉) → (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 31 | 30 | ralrimiva 3125 | . . . 4 ⊢ (𝜑 → ∀𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 32 | iunss 5009 | . . . 4 ⊢ (∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵) ↔ ∀𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) | |
| 33 | 31, 32 | sylibr 234 | . . 3 ⊢ (𝜑 → ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞))) ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 34 | 11, 33 | eqsstrd 3981 | . 2 ⊢ (𝜑 → ∙ ⊆ ((𝐾 × 𝐵) × 𝐵)) |
| 35 | dff2 7071 | . 2 ⊢ ( ∙ :(𝐾 × 𝐵)⟶𝐵 ↔ ( ∙ Fn (𝐾 × 𝐵) ∧ ∙ ⊆ ((𝐾 × 𝐵) × 𝐵))) | |
| 36 | 10, 34, 35 | sylanbrc 583 | 1 ⊢ (𝜑 → ∙ :(𝐾 × 𝐵)⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 {csn 4589 ∪ ciun 4955 × cxp 5636 Fn wfn 6506 ⟶wf 6507 –onto→wfo 6509 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 “s cimas 17467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-imas 17471 |
| This theorem is referenced by: imaslmod 33324 |
| Copyright terms: Public domain | W3C validator |