Step | Hyp | Ref
| Expression |
1 | | mamucl.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
2 | | mamucl.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
3 | 2 | ringcmnd 20094 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ CMnd) |
4 | 3 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑅 ∈ CMnd) |
5 | | mamuass.o |
. . . . . . 7
⊢ (𝜑 → 𝑂 ∈ Fin) |
6 | 5 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑂 ∈ Fin) |
7 | | mamuass.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ Fin) |
8 | 7 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑁 ∈ Fin) |
9 | | eqid 2732 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
10 | 2 | ad2antrr 724 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → 𝑅 ∈ Ring) |
11 | | mamuass.x |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
12 | | elmapi 8839 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
13 | 11, 12 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
14 | 13 | ad2antrr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
15 | | simplrl 775 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑖 ∈ 𝑀) |
16 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑙 ∈ 𝑁) |
17 | 14, 15, 16 | fovcdmd 7575 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → (𝑖𝑋𝑙) ∈ 𝐵) |
18 | 17 | adantrl 714 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → (𝑖𝑋𝑙) ∈ 𝐵) |
19 | | mamuass.y |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
20 | | elmapi 8839 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑂)) → 𝑌:(𝑁 × 𝑂)⟶𝐵) |
21 | 19, 20 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌:(𝑁 × 𝑂)⟶𝐵) |
22 | 21 | ad2antrr 724 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → 𝑌:(𝑁 × 𝑂)⟶𝐵) |
23 | | simprr 771 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → 𝑙 ∈ 𝑁) |
24 | | simprl 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → 𝑗 ∈ 𝑂) |
25 | 22, 23, 24 | fovcdmd 7575 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → (𝑙𝑌𝑗) ∈ 𝐵) |
26 | | mamuass.z |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑m (𝑂 × 𝑃))) |
27 | | elmapi 8839 |
. . . . . . . . . . . 12
⊢ (𝑍 ∈ (𝐵 ↑m (𝑂 × 𝑃)) → 𝑍:(𝑂 × 𝑃)⟶𝐵) |
28 | 26, 27 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑍:(𝑂 × 𝑃)⟶𝐵) |
29 | 28 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑍:(𝑂 × 𝑃)⟶𝐵) |
30 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑗 ∈ 𝑂) |
31 | | simplrr 776 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑘 ∈ 𝑃) |
32 | 29, 30, 31 | fovcdmd 7575 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → (𝑗𝑍𝑘) ∈ 𝐵) |
33 | 32 | adantrr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → (𝑗𝑍𝑘) ∈ 𝐵) |
34 | 1, 9, 10, 25, 33 | ringcld 20073 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)) ∈ 𝐵) |
35 | 1, 9, 10, 18, 34 | ringcld 20073 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))) ∈ 𝐵) |
36 | 1, 4, 6, 8, 35 | gsumcom3fi 19841 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑅 Σg (𝑗 ∈ 𝑂 ↦ (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))))) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))))) |
37 | | mamuass.f |
. . . . . . . . . 10
⊢ 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩) |
38 | 2 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑅 ∈ Ring) |
39 | | mamuass.m |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ Fin) |
40 | 39 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑀 ∈ Fin) |
41 | 7 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑁 ∈ Fin) |
42 | 5 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑂 ∈ Fin) |
43 | 11 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
44 | 19 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
45 | | simplrl 775 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑖 ∈ 𝑀) |
46 | 37, 1, 9, 38, 40, 41, 42, 43, 44, 45, 30 | mamufv 21880 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → (𝑖(𝑋𝐹𝑌)𝑗) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))))) |
47 | 46 | oveq1d 7420 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → ((𝑖(𝑋𝐹𝑌)𝑗)(.r‘𝑅)(𝑗𝑍𝑘)) = ((𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))))(.r‘𝑅)(𝑗𝑍𝑘))) |
48 | | eqid 2732 |
. . . . . . . . 9
⊢
(0g‘𝑅) = (0g‘𝑅) |
49 | 1, 9, 10, 18, 25 | ringcld 20073 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗)) ∈ 𝐵) |
50 | 49 | anassrs 468 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) ∧ 𝑙 ∈ 𝑁) → ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗)) ∈ 𝐵) |
51 | | eqid 2732 |
. . . . . . . . . 10
⊢ (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))) = (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))) |
52 | | ovexd 7440 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) ∧ 𝑙 ∈ 𝑁) → ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗)) ∈ V) |
53 | | fvexd 6903 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → (0g‘𝑅) ∈ V) |
54 | 51, 41, 52, 53 | fsuppmptdm 9370 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))) finSupp (0g‘𝑅)) |
55 | 1, 48, 9, 38, 41, 32, 50, 54 | gsummulc1 20121 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ (((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))(.r‘𝑅)(𝑗𝑍𝑘)))) = ((𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))))(.r‘𝑅)(𝑗𝑍𝑘))) |
56 | 1, 9 | ringass 20069 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑙) ∈ 𝐵 ∧ (𝑙𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → (((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))(.r‘𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) |
57 | 10, 18, 25, 33, 56 | syl13anc 1372 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → (((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))(.r‘𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) |
58 | 57 | anassrs 468 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) ∧ 𝑙 ∈ 𝑁) → (((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))(.r‘𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) |
59 | 58 | mpteq2dva 5247 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → (𝑙 ∈ 𝑁 ↦ (((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))(.r‘𝑅)(𝑗𝑍𝑘))) = (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))) |
60 | 59 | oveq2d 7421 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ (((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))(.r‘𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))) |
61 | 47, 55, 60 | 3eqtr2d 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → ((𝑖(𝑋𝐹𝑌)𝑗)(.r‘𝑅)(𝑗𝑍𝑘)) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))) |
62 | 61 | mpteq2dva 5247 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑗 ∈ 𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r‘𝑅)(𝑗𝑍𝑘))) = (𝑗 ∈ 𝑂 ↦ (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))))) |
63 | 62 | oveq2d 7421 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑗 ∈ 𝑂 ↦ (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))))) |
64 | | mamuass.i |
. . . . . . . . . 10
⊢ 𝐼 = (𝑅 maMul ⟨𝑁, 𝑂, 𝑃⟩) |
65 | 2 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑅 ∈ Ring) |
66 | 7 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑁 ∈ Fin) |
67 | 5 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑂 ∈ Fin) |
68 | | mamuass.p |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ Fin) |
69 | 68 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑃 ∈ Fin) |
70 | 19 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
71 | 26 | ad2antrr 724 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑍 ∈ (𝐵 ↑m (𝑂 × 𝑃))) |
72 | | simplrr 776 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑘 ∈ 𝑃) |
73 | 64, 1, 9, 65, 66, 67, 69, 70, 71, 16, 72 | mamufv 21880 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → (𝑙(𝑌𝐼𝑍)𝑘) = (𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))) |
74 | 73 | oveq2d 7421 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙(𝑌𝐼𝑍)𝑘)) = ((𝑖𝑋𝑙)(.r‘𝑅)(𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))) |
75 | 34 | anass1rs 653 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) ∧ 𝑗 ∈ 𝑂) → ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)) ∈ 𝐵) |
76 | | eqid 2732 |
. . . . . . . . . 10
⊢ (𝑗 ∈ 𝑂 ↦ ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))) = (𝑗 ∈ 𝑂 ↦ ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))) |
77 | | ovexd 7440 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) ∧ 𝑗 ∈ 𝑂) → ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)) ∈ V) |
78 | | fvexd 6903 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → (0g‘𝑅) ∈ V) |
79 | 76, 67, 77, 78 | fsuppmptdm 9370 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → (𝑗 ∈ 𝑂 ↦ ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))) finSupp (0g‘𝑅)) |
80 | 1, 48, 9, 65, 67, 17, 75, 79 | gsummulc2 20122 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))) = ((𝑖𝑋𝑙)(.r‘𝑅)(𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))) |
81 | 74, 80 | eqtr4d 2775 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙(𝑌𝐼𝑍)𝑘)) = (𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))) |
82 | 81 | mpteq2dva 5247 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙(𝑌𝐼𝑍)𝑘))) = (𝑙 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))))) |
83 | 82 | oveq2d 7421 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙(𝑌𝐼𝑍)𝑘)))) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))))) |
84 | 36, 63, 83 | 3eqtr4d 2782 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙(𝑌𝐼𝑍)𝑘))))) |
85 | | mamuass.g |
. . . . 5
⊢ 𝐺 = (𝑅 maMul ⟨𝑀, 𝑂, 𝑃⟩) |
86 | 2 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑅 ∈ Ring) |
87 | 39 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑀 ∈ Fin) |
88 | 68 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑃 ∈ Fin) |
89 | 1, 2, 37, 39, 7, 5, 11, 19 | mamucl 21892 |
. . . . . 6
⊢ (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑂))) |
90 | 89 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑋𝐹𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑂))) |
91 | 26 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑍 ∈ (𝐵 ↑m (𝑂 × 𝑃))) |
92 | | simprl 769 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑖 ∈ 𝑀) |
93 | | simprr 771 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑘 ∈ 𝑃) |
94 | 85, 1, 9, 86, 87, 6, 88, 90, 91, 92, 93 | mamufv 21880 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))) |
95 | | mamuass.h |
. . . . 5
⊢ 𝐻 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩) |
96 | 11 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
97 | 1, 2, 64, 7, 5, 68, 19, 26 | mamucl 21892 |
. . . . . 6
⊢ (𝜑 → (𝑌𝐼𝑍) ∈ (𝐵 ↑m (𝑁 × 𝑃))) |
98 | 97 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑌𝐼𝑍) ∈ (𝐵 ↑m (𝑁 × 𝑃))) |
99 | 95, 1, 9, 86, 87, 8, 88, 96, 98, 92, 93 | mamufv 21880 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙(𝑌𝐼𝑍)𝑘))))) |
100 | 84, 94, 99 | 3eqtr4d 2782 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘)) |
101 | 100 | ralrimivva 3200 |
. 2
⊢ (𝜑 → ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘)) |
102 | 1, 2, 85, 39, 5, 68, 89, 26 | mamucl 21892 |
. . . 4
⊢ (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) ∈ (𝐵 ↑m (𝑀 × 𝑃))) |
103 | | elmapi 8839 |
. . . 4
⊢ (((𝑋𝐹𝑌)𝐺𝑍) ∈ (𝐵 ↑m (𝑀 × 𝑃)) → ((𝑋𝐹𝑌)𝐺𝑍):(𝑀 × 𝑃)⟶𝐵) |
104 | | ffn 6714 |
. . . 4
⊢ (((𝑋𝐹𝑌)𝐺𝑍):(𝑀 × 𝑃)⟶𝐵 → ((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃)) |
105 | 102, 103,
104 | 3syl 18 |
. . 3
⊢ (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃)) |
106 | 1, 2, 95, 39, 7, 68, 11, 97 | mamucl 21892 |
. . . 4
⊢ (𝜑 → (𝑋𝐻(𝑌𝐼𝑍)) ∈ (𝐵 ↑m (𝑀 × 𝑃))) |
107 | | elmapi 8839 |
. . . 4
⊢ ((𝑋𝐻(𝑌𝐼𝑍)) ∈ (𝐵 ↑m (𝑀 × 𝑃)) → (𝑋𝐻(𝑌𝐼𝑍)):(𝑀 × 𝑃)⟶𝐵) |
108 | | ffn 6714 |
. . . 4
⊢ ((𝑋𝐻(𝑌𝐼𝑍)):(𝑀 × 𝑃)⟶𝐵 → (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃)) |
109 | 106, 107,
108 | 3syl 18 |
. . 3
⊢ (𝜑 → (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃)) |
110 | | eqfnov2 7535 |
. . 3
⊢ ((((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃) ∧ (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃)) → (((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)) ↔ ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘))) |
111 | 105, 109,
110 | syl2anc 584 |
. 2
⊢ (𝜑 → (((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)) ↔ ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘))) |
112 | 101, 111 | mpbird 256 |
1
⊢ (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍))) |