MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamuass Structured version   Visualization version   GIF version

Theorem mamuass 21765
Description: Matrix multiplication is associative, see also statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mamucl.b 𝐵 = (Base‘𝑅)
mamucl.r (𝜑𝑅 ∈ Ring)
mamuass.m (𝜑𝑀 ∈ Fin)
mamuass.n (𝜑𝑁 ∈ Fin)
mamuass.o (𝜑𝑂 ∈ Fin)
mamuass.p (𝜑𝑃 ∈ Fin)
mamuass.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamuass.y (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑂)))
mamuass.z (𝜑𝑍 ∈ (𝐵m (𝑂 × 𝑃)))
mamuass.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamuass.g 𝐺 = (𝑅 maMul ⟨𝑀, 𝑂, 𝑃⟩)
mamuass.h 𝐻 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamuass.i 𝐼 = (𝑅 maMul ⟨𝑁, 𝑂, 𝑃⟩)
Assertion
Ref Expression
mamuass (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)))

Proof of Theorem mamuass
Dummy variables 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.b . . . . . 6 𝐵 = (Base‘𝑅)
2 mamucl.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
3 ringcmn 20010 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
42, 3syl 17 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
54adantr 482 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑅 ∈ CMnd)
6 mamuass.o . . . . . . 7 (𝜑𝑂 ∈ Fin)
76adantr 482 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑂 ∈ Fin)
8 mamuass.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
98adantr 482 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑁 ∈ Fin)
102ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑅 ∈ Ring)
11 mamuass.x . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
12 elmapi 8794 . . . . . . . . . . 11 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
1311, 12syl 17 . . . . . . . . . 10 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
1413ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
15 simplrl 776 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑖𝑀)
16 simpr 486 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑙𝑁)
1714, 15, 16fovcdmd 7531 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑖𝑋𝑙) ∈ 𝐵)
1817adantrl 715 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (𝑖𝑋𝑙) ∈ 𝐵)
19 mamuass.y . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑂)))
20 elmapi 8794 . . . . . . . . . . 11 (𝑌 ∈ (𝐵m (𝑁 × 𝑂)) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
2119, 20syl 17 . . . . . . . . . 10 (𝜑𝑌:(𝑁 × 𝑂)⟶𝐵)
2221ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
23 simprr 772 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑙𝑁)
24 simprl 770 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑗𝑂)
2522, 23, 24fovcdmd 7531 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (𝑙𝑌𝑗) ∈ 𝐵)
26 mamuass.z . . . . . . . . . . . 12 (𝜑𝑍 ∈ (𝐵m (𝑂 × 𝑃)))
27 elmapi 8794 . . . . . . . . . . . 12 (𝑍 ∈ (𝐵m (𝑂 × 𝑃)) → 𝑍:(𝑂 × 𝑃)⟶𝐵)
2826, 27syl 17 . . . . . . . . . . 11 (𝜑𝑍:(𝑂 × 𝑃)⟶𝐵)
2928ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑍:(𝑂 × 𝑃)⟶𝐵)
30 simpr 486 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑗𝑂)
31 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑘𝑃)
3229, 30, 31fovcdmd 7531 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑗𝑍𝑘) ∈ 𝐵)
3332adantrr 716 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (𝑗𝑍𝑘) ∈ 𝐵)
34 eqid 2737 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
351, 34ringcl 19988 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑙𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
3610, 25, 33, 35syl3anc 1372 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
371, 34ringcl 19988 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑙) ∈ 𝐵 ∧ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵) → ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) ∈ 𝐵)
3810, 18, 36, 37syl3anc 1372 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) ∈ 𝐵)
391, 5, 7, 9, 38gsumcom3fi 19763 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑗𝑂 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))) = (𝑅 Σg (𝑙𝑁 ↦ (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))))
40 mamuass.f . . . . . . . . . 10 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
412ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑅 ∈ Ring)
42 mamuass.m . . . . . . . . . . 11 (𝜑𝑀 ∈ Fin)
4342ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑀 ∈ Fin)
448ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑁 ∈ Fin)
456ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑂 ∈ Fin)
4611ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
4719ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑌 ∈ (𝐵m (𝑁 × 𝑂)))
48 simplrl 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑖𝑀)
4940, 1, 34, 41, 43, 44, 45, 46, 47, 48, 30mamufv 21752 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑖(𝑋𝐹𝑌)𝑗) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)))))
5049oveq1d 7377 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)) = ((𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))))(.r𝑅)(𝑗𝑍𝑘)))
51 eqid 2737 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
52 eqid 2737 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
531, 34ringcl 19988 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑙) ∈ 𝐵 ∧ (𝑙𝑌𝑗) ∈ 𝐵) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ 𝐵)
5410, 18, 25, 53syl3anc 1372 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ 𝐵)
5554anassrs 469 . . . . . . . . 9 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ 𝐵)
56 eqid 2737 . . . . . . . . . 10 (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))) = (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)))
57 ovexd 7397 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ V)
58 fvexd 6862 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (0g𝑅) ∈ V)
5956, 44, 57, 58fsuppmptdm 9323 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))) finSupp (0g𝑅))
601, 51, 52, 34, 41, 44, 32, 55, 59gsummulc1 20037 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑅 Σg (𝑙𝑁 ↦ (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)))) = ((𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))))(.r𝑅)(𝑗𝑍𝑘)))
611, 34ringass 19991 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑙) ∈ 𝐵 ∧ (𝑙𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
6210, 18, 25, 33, 61syl13anc 1373 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
6362anassrs 469 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) ∧ 𝑙𝑁) → (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
6463mpteq2dva 5210 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑙𝑁 ↦ (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘))) = (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
6564oveq2d 7378 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑅 Σg (𝑙𝑁 ↦ (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
6650, 60, 653eqtr2d 2783 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
6766mpteq2dva 5210 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑂 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))))
6867oveq2d 7378 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑗𝑂 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))))
69 mamuass.i . . . . . . . . . 10 𝐼 = (𝑅 maMul ⟨𝑁, 𝑂, 𝑃⟩)
702ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑅 ∈ Ring)
718ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑁 ∈ Fin)
726ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑂 ∈ Fin)
73 mamuass.p . . . . . . . . . . 11 (𝜑𝑃 ∈ Fin)
7473ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑃 ∈ Fin)
7519ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑌 ∈ (𝐵m (𝑁 × 𝑂)))
7626ad2antrr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑍 ∈ (𝐵m (𝑂 × 𝑃)))
77 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑘𝑃)
7869, 1, 34, 70, 71, 72, 74, 75, 76, 16, 77mamufv 21752 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑙(𝑌𝐼𝑍)𝑘) = (𝑅 Σg (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
7978oveq2d 7378 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)(𝑅 Σg (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
8036anass1rs 654 . . . . . . . . 9 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) ∧ 𝑗𝑂) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
81 eqid 2737 . . . . . . . . . 10 (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))
82 ovexd 7397 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) ∧ 𝑗𝑂) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ V)
83 fvexd 6862 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (0g𝑅) ∈ V)
8481, 72, 82, 83fsuppmptdm 9323 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) finSupp (0g𝑅))
851, 51, 52, 34, 70, 72, 17, 80, 84gsummulc2 20038 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))) = ((𝑖𝑋𝑙)(.r𝑅)(𝑅 Σg (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
8679, 85eqtr4d 2780 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)) = (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
8786mpteq2dva 5210 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘))) = (𝑙𝑁 ↦ (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))))
8887oveq2d 7378 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)))) = (𝑅 Σg (𝑙𝑁 ↦ (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))))
8939, 68, 883eqtr4d 2787 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)))))
90 mamuass.g . . . . 5 𝐺 = (𝑅 maMul ⟨𝑀, 𝑂, 𝑃⟩)
912adantr 482 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑅 ∈ Ring)
9242adantr 482 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑀 ∈ Fin)
9373adantr 482 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑃 ∈ Fin)
941, 2, 40, 42, 8, 6, 11, 19mamucl 21764 . . . . . 6 (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵m (𝑀 × 𝑂)))
9594adantr 482 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑋𝐹𝑌) ∈ (𝐵m (𝑀 × 𝑂)))
9626adantr 482 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑍 ∈ (𝐵m (𝑂 × 𝑃)))
97 simprl 770 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑖𝑀)
98 simprr 772 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑘𝑃)
9990, 1, 34, 91, 92, 7, 93, 95, 96, 97, 98mamufv 21752 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑅 Σg (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
100 mamuass.h . . . . 5 𝐻 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
10111adantr 482 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
1021, 2, 69, 8, 6, 73, 19, 26mamucl 21764 . . . . . 6 (𝜑 → (𝑌𝐼𝑍) ∈ (𝐵m (𝑁 × 𝑃)))
103102adantr 482 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑌𝐼𝑍) ∈ (𝐵m (𝑁 × 𝑃)))
104100, 1, 34, 91, 92, 9, 93, 101, 103, 97, 98mamufv 21752 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)))))
10589, 99, 1043eqtr4d 2787 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘))
106105ralrimivva 3198 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘))
1071, 2, 90, 42, 6, 73, 94, 26mamucl 21764 . . . 4 (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) ∈ (𝐵m (𝑀 × 𝑃)))
108 elmapi 8794 . . . 4 (((𝑋𝐹𝑌)𝐺𝑍) ∈ (𝐵m (𝑀 × 𝑃)) → ((𝑋𝐹𝑌)𝐺𝑍):(𝑀 × 𝑃)⟶𝐵)
109 ffn 6673 . . . 4 (((𝑋𝐹𝑌)𝐺𝑍):(𝑀 × 𝑃)⟶𝐵 → ((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃))
110107, 108, 1093syl 18 . . 3 (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃))
1111, 2, 100, 42, 8, 73, 11, 102mamucl 21764 . . . 4 (𝜑 → (𝑋𝐻(𝑌𝐼𝑍)) ∈ (𝐵m (𝑀 × 𝑃)))
112 elmapi 8794 . . . 4 ((𝑋𝐻(𝑌𝐼𝑍)) ∈ (𝐵m (𝑀 × 𝑃)) → (𝑋𝐻(𝑌𝐼𝑍)):(𝑀 × 𝑃)⟶𝐵)
113 ffn 6673 . . . 4 ((𝑋𝐻(𝑌𝐼𝑍)):(𝑀 × 𝑃)⟶𝐵 → (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃))
114111, 112, 1133syl 18 . . 3 (𝜑 → (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃))
115 eqfnov2 7491 . . 3 ((((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃) ∧ (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃)) → (((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)) ↔ ∀𝑖𝑀𝑘𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘)))
116110, 114, 115syl2anc 585 . 2 (𝜑 → (((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)) ↔ ∀𝑖𝑀𝑘𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘)))
117106, 116mpbird 257 1 (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3065  Vcvv 3448  cotp 4599  cmpt 5193   × cxp 5636   Fn wfn 6496  wf 6497  cfv 6501  (class class class)co 7362  m cmap 8772  Fincfn 8890  Basecbs 17090  +gcplusg 17140  .rcmulr 17141  0gc0g 17328   Σg cgsu 17329  CMndccmn 19569  Ringcrg 19971   maMul cmmul 21748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-ot 4600  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-oi 9453  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-fzo 13575  df-seq 13914  df-hash 14238  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-ress 17120  df-plusg 17153  df-0g 17330  df-gsum 17331  df-mre 17473  df-mrc 17474  df-acs 17476  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-mhm 18608  df-submnd 18609  df-grp 18758  df-minusg 18759  df-mulg 18880  df-ghm 19013  df-cntz 19104  df-cmn 19571  df-abl 19572  df-mgp 19904  df-ur 19921  df-ring 19973  df-mamu 21749
This theorem is referenced by:  matring  21808
  Copyright terms: Public domain W3C validator