Step | Hyp | Ref
| Expression |
1 | | mamucl.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
2 | | mamucl.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
3 | | ringcmn 19801 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
4 | 2, 3 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ CMnd) |
5 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑅 ∈ CMnd) |
6 | | mamuass.o |
. . . . . . 7
⊢ (𝜑 → 𝑂 ∈ Fin) |
7 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑂 ∈ Fin) |
8 | | mamuass.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ Fin) |
9 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑁 ∈ Fin) |
10 | 2 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → 𝑅 ∈ Ring) |
11 | | mamuass.x |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
12 | | elmapi 8611 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
13 | 11, 12 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
14 | 13 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
15 | | simplrl 773 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑖 ∈ 𝑀) |
16 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑙 ∈ 𝑁) |
17 | 14, 15, 16 | fovrnd 7435 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → (𝑖𝑋𝑙) ∈ 𝐵) |
18 | 17 | adantrl 712 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → (𝑖𝑋𝑙) ∈ 𝐵) |
19 | | mamuass.y |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
20 | | elmapi 8611 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑂)) → 𝑌:(𝑁 × 𝑂)⟶𝐵) |
21 | 19, 20 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌:(𝑁 × 𝑂)⟶𝐵) |
22 | 21 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → 𝑌:(𝑁 × 𝑂)⟶𝐵) |
23 | | simprr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → 𝑙 ∈ 𝑁) |
24 | | simprl 767 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → 𝑗 ∈ 𝑂) |
25 | 22, 23, 24 | fovrnd 7435 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → (𝑙𝑌𝑗) ∈ 𝐵) |
26 | | mamuass.z |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑m (𝑂 × 𝑃))) |
27 | | elmapi 8611 |
. . . . . . . . . . . 12
⊢ (𝑍 ∈ (𝐵 ↑m (𝑂 × 𝑃)) → 𝑍:(𝑂 × 𝑃)⟶𝐵) |
28 | 26, 27 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑍:(𝑂 × 𝑃)⟶𝐵) |
29 | 28 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑍:(𝑂 × 𝑃)⟶𝐵) |
30 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑗 ∈ 𝑂) |
31 | | simplrr 774 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑘 ∈ 𝑃) |
32 | 29, 30, 31 | fovrnd 7435 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → (𝑗𝑍𝑘) ∈ 𝐵) |
33 | 32 | adantrr 713 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → (𝑗𝑍𝑘) ∈ 𝐵) |
34 | | eqid 2739 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
35 | 1, 34 | ringcl 19781 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑙𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)) ∈ 𝐵) |
36 | 10, 25, 33, 35 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)) ∈ 𝐵) |
37 | 1, 34 | ringcl 19781 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑙) ∈ 𝐵 ∧ ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)) ∈ 𝐵) → ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))) ∈ 𝐵) |
38 | 10, 18, 36, 37 | syl3anc 1369 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))) ∈ 𝐵) |
39 | 1, 5, 7, 9, 38 | gsumcom3fi 19561 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑅 Σg (𝑗 ∈ 𝑂 ↦ (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))))) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))))) |
40 | | mamuass.f |
. . . . . . . . . 10
⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) |
41 | 2 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑅 ∈ Ring) |
42 | | mamuass.m |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ Fin) |
43 | 42 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑀 ∈ Fin) |
44 | 8 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑁 ∈ Fin) |
45 | 6 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑂 ∈ Fin) |
46 | 11 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
47 | 19 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
48 | | simplrl 773 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → 𝑖 ∈ 𝑀) |
49 | 40, 1, 34, 41, 43, 44, 45, 46, 47, 48, 30 | mamufv 21517 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → (𝑖(𝑋𝐹𝑌)𝑗) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))))) |
50 | 49 | oveq1d 7283 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → ((𝑖(𝑋𝐹𝑌)𝑗)(.r‘𝑅)(𝑗𝑍𝑘)) = ((𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))))(.r‘𝑅)(𝑗𝑍𝑘))) |
51 | | eqid 2739 |
. . . . . . . . 9
⊢
(0g‘𝑅) = (0g‘𝑅) |
52 | | eqid 2739 |
. . . . . . . . 9
⊢
(+g‘𝑅) = (+g‘𝑅) |
53 | 1, 34 | ringcl 19781 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑙) ∈ 𝐵 ∧ (𝑙𝑌𝑗) ∈ 𝐵) → ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗)) ∈ 𝐵) |
54 | 10, 18, 25, 53 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗)) ∈ 𝐵) |
55 | 54 | anassrs 467 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) ∧ 𝑙 ∈ 𝑁) → ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗)) ∈ 𝐵) |
56 | | eqid 2739 |
. . . . . . . . . 10
⊢ (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))) = (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))) |
57 | | ovexd 7303 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) ∧ 𝑙 ∈ 𝑁) → ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗)) ∈ V) |
58 | | fvexd 6783 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → (0g‘𝑅) ∈ V) |
59 | 56, 44, 57, 58 | fsuppmptdm 9100 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))) finSupp (0g‘𝑅)) |
60 | 1, 51, 52, 34, 41, 44, 32, 55, 59 | gsummulc1 19826 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ (((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))(.r‘𝑅)(𝑗𝑍𝑘)))) = ((𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))))(.r‘𝑅)(𝑗𝑍𝑘))) |
61 | 1, 34 | ringass 19784 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑙) ∈ 𝐵 ∧ (𝑙𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → (((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))(.r‘𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) |
62 | 10, 18, 25, 33, 61 | syl13anc 1370 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ (𝑗 ∈ 𝑂 ∧ 𝑙 ∈ 𝑁)) → (((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))(.r‘𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) |
63 | 62 | anassrs 467 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) ∧ 𝑙 ∈ 𝑁) → (((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))(.r‘𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) |
64 | 63 | mpteq2dva 5178 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → (𝑙 ∈ 𝑁 ↦ (((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))(.r‘𝑅)(𝑗𝑍𝑘))) = (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))) |
65 | 64 | oveq2d 7284 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ (((𝑖𝑋𝑙)(.r‘𝑅)(𝑙𝑌𝑗))(.r‘𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))) |
66 | 50, 60, 65 | 3eqtr2d 2785 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑂) → ((𝑖(𝑋𝐹𝑌)𝑗)(.r‘𝑅)(𝑗𝑍𝑘)) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))) |
67 | 66 | mpteq2dva 5178 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑗 ∈ 𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r‘𝑅)(𝑗𝑍𝑘))) = (𝑗 ∈ 𝑂 ↦ (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))))) |
68 | 67 | oveq2d 7284 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑗 ∈ 𝑂 ↦ (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))))) |
69 | | mamuass.i |
. . . . . . . . . 10
⊢ 𝐼 = (𝑅 maMul 〈𝑁, 𝑂, 𝑃〉) |
70 | 2 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑅 ∈ Ring) |
71 | 8 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑁 ∈ Fin) |
72 | 6 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑂 ∈ Fin) |
73 | | mamuass.p |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈ Fin) |
74 | 73 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑃 ∈ Fin) |
75 | 19 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
76 | 26 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑍 ∈ (𝐵 ↑m (𝑂 × 𝑃))) |
77 | | simplrr 774 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → 𝑘 ∈ 𝑃) |
78 | 69, 1, 34, 70, 71, 72, 74, 75, 76, 16, 77 | mamufv 21517 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → (𝑙(𝑌𝐼𝑍)𝑘) = (𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))) |
79 | 78 | oveq2d 7284 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙(𝑌𝐼𝑍)𝑘)) = ((𝑖𝑋𝑙)(.r‘𝑅)(𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))) |
80 | 36 | anass1rs 651 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) ∧ 𝑗 ∈ 𝑂) → ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)) ∈ 𝐵) |
81 | | eqid 2739 |
. . . . . . . . . 10
⊢ (𝑗 ∈ 𝑂 ↦ ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))) = (𝑗 ∈ 𝑂 ↦ ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))) |
82 | | ovexd 7303 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) ∧ 𝑗 ∈ 𝑂) → ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)) ∈ V) |
83 | | fvexd 6783 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → (0g‘𝑅) ∈ V) |
84 | 81, 72, 82, 83 | fsuppmptdm 9100 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → (𝑗 ∈ 𝑂 ↦ ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))) finSupp (0g‘𝑅)) |
85 | 1, 51, 52, 34, 70, 72, 17, 80, 84 | gsummulc2 19827 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))) = ((𝑖𝑋𝑙)(.r‘𝑅)(𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))) |
86 | 79, 85 | eqtr4d 2782 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑙 ∈ 𝑁) → ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙(𝑌𝐼𝑍)𝑘)) = (𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))) |
87 | 86 | mpteq2dva 5178 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙(𝑌𝐼𝑍)𝑘))) = (𝑙 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))))) |
88 | 87 | oveq2d 7284 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙(𝑌𝐼𝑍)𝑘)))) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)((𝑙𝑌𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))))) |
89 | 39, 68, 88 | 3eqtr4d 2789 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙(𝑌𝐼𝑍)𝑘))))) |
90 | | mamuass.g |
. . . . 5
⊢ 𝐺 = (𝑅 maMul 〈𝑀, 𝑂, 𝑃〉) |
91 | 2 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑅 ∈ Ring) |
92 | 42 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑀 ∈ Fin) |
93 | 73 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑃 ∈ Fin) |
94 | 1, 2, 40, 42, 8, 6, 11, 19 | mamucl 21529 |
. . . . . 6
⊢ (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑂))) |
95 | 94 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑋𝐹𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑂))) |
96 | 26 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑍 ∈ (𝐵 ↑m (𝑂 × 𝑃))) |
97 | | simprl 767 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑖 ∈ 𝑀) |
98 | | simprr 769 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑘 ∈ 𝑃) |
99 | 90, 1, 34, 91, 92, 7, 93, 95, 96, 97, 98 | mamufv 21517 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑅 Σg (𝑗 ∈ 𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))) |
100 | | mamuass.h |
. . . . 5
⊢ 𝐻 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) |
101 | 11 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
102 | 1, 2, 69, 8, 6, 73, 19, 26 | mamucl 21529 |
. . . . . 6
⊢ (𝜑 → (𝑌𝐼𝑍) ∈ (𝐵 ↑m (𝑁 × 𝑃))) |
103 | 102 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑌𝐼𝑍) ∈ (𝐵 ↑m (𝑁 × 𝑃))) |
104 | 100, 1, 34, 91, 92, 9, 93, 101, 103, 97, 98 | mamufv 21517 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘) = (𝑅 Σg (𝑙 ∈ 𝑁 ↦ ((𝑖𝑋𝑙)(.r‘𝑅)(𝑙(𝑌𝐼𝑍)𝑘))))) |
105 | 89, 99, 104 | 3eqtr4d 2789 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘)) |
106 | 105 | ralrimivva 3116 |
. 2
⊢ (𝜑 → ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘)) |
107 | 1, 2, 90, 42, 6, 73, 94, 26 | mamucl 21529 |
. . . 4
⊢ (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) ∈ (𝐵 ↑m (𝑀 × 𝑃))) |
108 | | elmapi 8611 |
. . . 4
⊢ (((𝑋𝐹𝑌)𝐺𝑍) ∈ (𝐵 ↑m (𝑀 × 𝑃)) → ((𝑋𝐹𝑌)𝐺𝑍):(𝑀 × 𝑃)⟶𝐵) |
109 | | ffn 6596 |
. . . 4
⊢ (((𝑋𝐹𝑌)𝐺𝑍):(𝑀 × 𝑃)⟶𝐵 → ((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃)) |
110 | 107, 108,
109 | 3syl 18 |
. . 3
⊢ (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃)) |
111 | 1, 2, 100, 42, 8, 73, 11, 102 | mamucl 21529 |
. . . 4
⊢ (𝜑 → (𝑋𝐻(𝑌𝐼𝑍)) ∈ (𝐵 ↑m (𝑀 × 𝑃))) |
112 | | elmapi 8611 |
. . . 4
⊢ ((𝑋𝐻(𝑌𝐼𝑍)) ∈ (𝐵 ↑m (𝑀 × 𝑃)) → (𝑋𝐻(𝑌𝐼𝑍)):(𝑀 × 𝑃)⟶𝐵) |
113 | | ffn 6596 |
. . . 4
⊢ ((𝑋𝐻(𝑌𝐼𝑍)):(𝑀 × 𝑃)⟶𝐵 → (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃)) |
114 | 111, 112,
113 | 3syl 18 |
. . 3
⊢ (𝜑 → (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃)) |
115 | | eqfnov2 7395 |
. . 3
⊢ ((((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃) ∧ (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃)) → (((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)) ↔ ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘))) |
116 | 110, 114,
115 | syl2anc 583 |
. 2
⊢ (𝜑 → (((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)) ↔ ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘))) |
117 | 106, 116 | mpbird 256 |
1
⊢ (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍))) |