MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamuass Structured version   Visualization version   GIF version

Theorem mamuass 20582
Description: Matrix multiplication is associative, see also statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mamucl.b 𝐵 = (Base‘𝑅)
mamucl.r (𝜑𝑅 ∈ Ring)
mamuass.m (𝜑𝑀 ∈ Fin)
mamuass.n (𝜑𝑁 ∈ Fin)
mamuass.o (𝜑𝑂 ∈ Fin)
mamuass.p (𝜑𝑃 ∈ Fin)
mamuass.x (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
mamuass.y (𝜑𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
mamuass.z (𝜑𝑍 ∈ (𝐵𝑚 (𝑂 × 𝑃)))
mamuass.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamuass.g 𝐺 = (𝑅 maMul ⟨𝑀, 𝑂, 𝑃⟩)
mamuass.h 𝐻 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamuass.i 𝐼 = (𝑅 maMul ⟨𝑁, 𝑂, 𝑃⟩)
Assertion
Ref Expression
mamuass (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)))

Proof of Theorem mamuass
Dummy variables 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.b . . . . . 6 𝐵 = (Base‘𝑅)
2 mamucl.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
3 ringcmn 18942 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
42, 3syl 17 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
54adantr 474 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑅 ∈ CMnd)
6 mamuass.o . . . . . . 7 (𝜑𝑂 ∈ Fin)
76adantr 474 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑂 ∈ Fin)
8 mamuass.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
98adantr 474 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑁 ∈ Fin)
102ad2antrr 717 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑅 ∈ Ring)
11 mamuass.x . . . . . . . . . . 11 (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
12 elmapi 8149 . . . . . . . . . . 11 (𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
1311, 12syl 17 . . . . . . . . . 10 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
1413ad2antrr 717 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
15 simplrl 795 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑖𝑀)
16 simpr 479 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑙𝑁)
1714, 15, 16fovrnd 7071 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑖𝑋𝑙) ∈ 𝐵)
1817adantrl 707 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (𝑖𝑋𝑙) ∈ 𝐵)
19 mamuass.y . . . . . . . . . . 11 (𝜑𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
20 elmapi 8149 . . . . . . . . . . 11 (𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
2119, 20syl 17 . . . . . . . . . 10 (𝜑𝑌:(𝑁 × 𝑂)⟶𝐵)
2221ad2antrr 717 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
23 simprr 789 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑙𝑁)
24 simprl 787 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → 𝑗𝑂)
2522, 23, 24fovrnd 7071 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (𝑙𝑌𝑗) ∈ 𝐵)
26 mamuass.z . . . . . . . . . . . 12 (𝜑𝑍 ∈ (𝐵𝑚 (𝑂 × 𝑃)))
27 elmapi 8149 . . . . . . . . . . . 12 (𝑍 ∈ (𝐵𝑚 (𝑂 × 𝑃)) → 𝑍:(𝑂 × 𝑃)⟶𝐵)
2826, 27syl 17 . . . . . . . . . . 11 (𝜑𝑍:(𝑂 × 𝑃)⟶𝐵)
2928ad2antrr 717 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑍:(𝑂 × 𝑃)⟶𝐵)
30 simpr 479 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑗𝑂)
31 simplrr 796 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑘𝑃)
3229, 30, 31fovrnd 7071 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑗𝑍𝑘) ∈ 𝐵)
3332adantrr 708 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (𝑗𝑍𝑘) ∈ 𝐵)
34 eqid 2825 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
351, 34ringcl 18922 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑙𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
3610, 25, 33, 35syl3anc 1494 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
371, 34ringcl 18922 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑙) ∈ 𝐵 ∧ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵) → ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) ∈ 𝐵)
3810, 18, 36, 37syl3anc 1494 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) ∈ 𝐵)
391, 5, 7, 9, 38gsumcom3fi 20580 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑗𝑂 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))) = (𝑅 Σg (𝑙𝑁 ↦ (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))))
40 mamuass.f . . . . . . . . . 10 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
412ad2antrr 717 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑅 ∈ Ring)
42 mamuass.m . . . . . . . . . . 11 (𝜑𝑀 ∈ Fin)
4342ad2antrr 717 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑀 ∈ Fin)
448ad2antrr 717 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑁 ∈ Fin)
456ad2antrr 717 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑂 ∈ Fin)
4611ad2antrr 717 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
4719ad2antrr 717 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
48 simplrl 795 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → 𝑖𝑀)
4940, 1, 34, 41, 43, 44, 45, 46, 47, 48, 30mamufv 20567 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑖(𝑋𝐹𝑌)𝑗) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)))))
5049oveq1d 6925 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)) = ((𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))))(.r𝑅)(𝑗𝑍𝑘)))
51 eqid 2825 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
52 eqid 2825 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
531, 34ringcl 18922 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑙) ∈ 𝐵 ∧ (𝑙𝑌𝑗) ∈ 𝐵) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ 𝐵)
5410, 18, 25, 53syl3anc 1494 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ 𝐵)
5554anassrs 461 . . . . . . . . 9 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ 𝐵)
56 eqid 2825 . . . . . . . . . 10 (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))) = (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)))
57 ovexd 6944 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗)) ∈ V)
58 fvexd 6452 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (0g𝑅) ∈ V)
5956, 44, 57, 58fsuppmptdm 8561 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))) finSupp (0g𝑅))
601, 51, 52, 34, 41, 44, 32, 55, 59gsummulc1 18967 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑅 Σg (𝑙𝑁 ↦ (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)))) = ((𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))))(.r𝑅)(𝑗𝑍𝑘)))
611, 34ringass 18925 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑙) ∈ 𝐵 ∧ (𝑙𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
6210, 18, 25, 33, 61syl13anc 1495 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ (𝑗𝑂𝑙𝑁)) → (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
6362anassrs 461 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) ∧ 𝑙𝑁) → (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))
6463mpteq2dva 4969 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑙𝑁 ↦ (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘))) = (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
6564oveq2d 6926 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → (𝑅 Σg (𝑙𝑁 ↦ (((𝑖𝑋𝑙)(.r𝑅)(𝑙𝑌𝑗))(.r𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
6650, 60, 653eqtr2d 2867 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑂) → ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
6766mpteq2dva 4969 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑂 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))))
6867oveq2d 6926 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑗𝑂 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))))
69 mamuass.i . . . . . . . . . 10 𝐼 = (𝑅 maMul ⟨𝑁, 𝑂, 𝑃⟩)
702ad2antrr 717 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑅 ∈ Ring)
718ad2antrr 717 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑁 ∈ Fin)
726ad2antrr 717 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑂 ∈ Fin)
73 mamuass.p . . . . . . . . . . 11 (𝜑𝑃 ∈ Fin)
7473ad2antrr 717 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑃 ∈ Fin)
7519ad2antrr 717 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
7626ad2antrr 717 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑍 ∈ (𝐵𝑚 (𝑂 × 𝑃)))
77 simplrr 796 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → 𝑘𝑃)
7869, 1, 34, 70, 71, 72, 74, 75, 76, 16, 77mamufv 20567 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑙(𝑌𝐼𝑍)𝑘) = (𝑅 Σg (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
7978oveq2d 6926 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)) = ((𝑖𝑋𝑙)(.r𝑅)(𝑅 Σg (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
8036anass1rs 645 . . . . . . . . 9 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) ∧ 𝑗𝑂) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
81 eqid 2825 . . . . . . . . . 10 (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))
82 ovexd 6944 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) ∧ 𝑗𝑂) → ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ V)
83 fvexd 6452 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (0g𝑅) ∈ V)
8481, 72, 82, 83fsuppmptdm 8561 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))) finSupp (0g𝑅))
851, 51, 52, 34, 70, 72, 17, 80, 84gsummulc2 18968 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))) = ((𝑖𝑋𝑙)(.r𝑅)(𝑅 Σg (𝑗𝑂 ↦ ((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
8679, 85eqtr4d 2864 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑙𝑁) → ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)) = (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
8786mpteq2dva 4969 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘))) = (𝑙𝑁 ↦ (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘)))))))
8887oveq2d 6926 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)))) = (𝑅 Σg (𝑙𝑁 ↦ (𝑅 Σg (𝑗𝑂 ↦ ((𝑖𝑋𝑙)(.r𝑅)((𝑙𝑌𝑗)(.r𝑅)(𝑗𝑍𝑘))))))))
8939, 68, 883eqtr4d 2871 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)))))
90 mamuass.g . . . . 5 𝐺 = (𝑅 maMul ⟨𝑀, 𝑂, 𝑃⟩)
912adantr 474 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑅 ∈ Ring)
9242adantr 474 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑀 ∈ Fin)
9373adantr 474 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑃 ∈ Fin)
941, 2, 40, 42, 8, 6, 11, 19mamucl 20581 . . . . . 6 (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
9594adantr 474 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑋𝐹𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
9626adantr 474 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑍 ∈ (𝐵𝑚 (𝑂 × 𝑃)))
97 simprl 787 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑖𝑀)
98 simprr 789 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑘𝑃)
9990, 1, 34, 91, 92, 7, 93, 95, 96, 97, 98mamufv 20567 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑅 Σg (𝑗𝑂 ↦ ((𝑖(𝑋𝐹𝑌)𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
100 mamuass.h . . . . 5 𝐻 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
10111adantr 474 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
1021, 2, 69, 8, 6, 73, 19, 26mamucl 20581 . . . . . 6 (𝜑 → (𝑌𝐼𝑍) ∈ (𝐵𝑚 (𝑁 × 𝑃)))
103102adantr 474 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑌𝐼𝑍) ∈ (𝐵𝑚 (𝑁 × 𝑃)))
104100, 1, 34, 91, 92, 9, 93, 101, 103, 97, 98mamufv 20567 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘) = (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙(𝑌𝐼𝑍)𝑘)))))
10589, 99, 1043eqtr4d 2871 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘))
106105ralrimivva 3180 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘))
1071, 2, 90, 42, 6, 73, 94, 26mamucl 20581 . . . 4 (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑃)))
108 elmapi 8149 . . . 4 (((𝑋𝐹𝑌)𝐺𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑃)) → ((𝑋𝐹𝑌)𝐺𝑍):(𝑀 × 𝑃)⟶𝐵)
109 ffn 6282 . . . 4 (((𝑋𝐹𝑌)𝐺𝑍):(𝑀 × 𝑃)⟶𝐵 → ((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃))
110107, 108, 1093syl 18 . . 3 (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃))
1111, 2, 100, 42, 8, 73, 11, 102mamucl 20581 . . . 4 (𝜑 → (𝑋𝐻(𝑌𝐼𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑃)))
112 elmapi 8149 . . . 4 ((𝑋𝐻(𝑌𝐼𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑃)) → (𝑋𝐻(𝑌𝐼𝑍)):(𝑀 × 𝑃)⟶𝐵)
113 ffn 6282 . . . 4 ((𝑋𝐻(𝑌𝐼𝑍)):(𝑀 × 𝑃)⟶𝐵 → (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃))
114111, 112, 1133syl 18 . . 3 (𝜑 → (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃))
115 eqfnov2 7032 . . 3 ((((𝑋𝐹𝑌)𝐺𝑍) Fn (𝑀 × 𝑃) ∧ (𝑋𝐻(𝑌𝐼𝑍)) Fn (𝑀 × 𝑃)) → (((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)) ↔ ∀𝑖𝑀𝑘𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘)))
116110, 114, 115syl2anc 579 . 2 (𝜑 → (((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)) ↔ ∀𝑖𝑀𝑘𝑃 (𝑖((𝑋𝐹𝑌)𝐺𝑍)𝑘) = (𝑖(𝑋𝐻(𝑌𝐼𝑍))𝑘)))
117106, 116mpbird 249 1 (𝜑 → ((𝑋𝐹𝑌)𝐺𝑍) = (𝑋𝐻(𝑌𝐼𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wral 3117  Vcvv 3414  cotp 4407  cmpt 4954   × cxp 5344   Fn wfn 6122  wf 6123  cfv 6127  (class class class)co 6910  𝑚 cmap 8127  Fincfn 8228  Basecbs 16229  +gcplusg 16312  .rcmulr 16313  0gc0g 16460   Σg cgsu 16461  CMndccmn 18553  Ringcrg 18908   maMul cmmul 20563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-ot 4408  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-oi 8691  df-card 9085  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-n0 11626  df-z 11712  df-uz 11976  df-fz 12627  df-fzo 12768  df-seq 13103  df-hash 13418  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-0g 16462  df-gsum 16463  df-mre 16606  df-mrc 16607  df-acs 16609  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-mhm 17695  df-submnd 17696  df-grp 17786  df-minusg 17787  df-mulg 17902  df-ghm 18016  df-cntz 18107  df-cmn 18555  df-abl 18556  df-mgp 18851  df-ur 18863  df-ring 18910  df-mamu 20564
This theorem is referenced by:  matring  20623
  Copyright terms: Public domain W3C validator