MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plypf1 Structured version   Visualization version   GIF version

Theorem plypf1 26124
Description: Write the set of complex polynomials in a subring in terms of the abstract polynomial construction. (Contributed by Mario Carneiro, 3-Jul-2015.) (Proof shortened by AV, 29-Sep-2019.)
Hypotheses
Ref Expression
plypf1.r 𝑅 = (ℂflds 𝑆)
plypf1.p 𝑃 = (Poly1𝑅)
plypf1.a 𝐴 = (Base‘𝑃)
plypf1.e 𝐸 = (eval1‘ℂfld)
Assertion
Ref Expression
plypf1 (𝑆 ∈ (SubRing‘ℂfld) → (Poly‘𝑆) = (𝐸𝐴))

Proof of Theorem plypf1
Dummy variables 𝑓 𝑎 𝑘 𝑛 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 26107 . . . . 5 (𝑓 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
21simprbi 496 . . . 4 (𝑓 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
3 eqid 2730 . . . . . . . . 9 (ℂflds ℂ) = (ℂflds ℂ)
4 cnfldbas 21275 . . . . . . . . 9 ℂ = (Base‘ℂfld)
5 eqid 2730 . . . . . . . . 9 (0g‘(ℂflds ℂ)) = (0g‘(ℂflds ℂ))
6 cnex 11156 . . . . . . . . . 10 ℂ ∈ V
76a1i 11 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → ℂ ∈ V)
8 fzfid 13945 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (0...𝑛) ∈ Fin)
9 cnring 21309 . . . . . . . . . 10 fld ∈ Ring
10 ringcmn 20198 . . . . . . . . . 10 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
119, 10mp1i 13 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → ℂfld ∈ CMnd)
124subrgss 20488 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
1312ad2antrr 726 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑆 ⊆ ℂ)
14 elmapi 8825 . . . . . . . . . . . . . . 15 (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
1514ad2antll 729 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
16 subrgsubg 20493 . . . . . . . . . . . . . . . . . . 19 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld))
17 cnfld0 21311 . . . . . . . . . . . . . . . . . . . 20 0 = (0g‘ℂfld)
1817subg0cl 19073 . . . . . . . . . . . . . . . . . . 19 (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆)
1916, 18syl 17 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ (SubRing‘ℂfld) → 0 ∈ 𝑆)
2019adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → 0 ∈ 𝑆)
2120snssd 4776 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → {0} ⊆ 𝑆)
22 ssequn2 4155 . . . . . . . . . . . . . . . 16 ({0} ⊆ 𝑆 ↔ (𝑆 ∪ {0}) = 𝑆)
2321, 22sylib 218 . . . . . . . . . . . . . . 15 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑆 ∪ {0}) = 𝑆)
2423feq3d 6676 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑎:ℕ0⟶(𝑆 ∪ {0}) ↔ 𝑎:ℕ0𝑆))
2515, 24mpbid 232 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → 𝑎:ℕ0𝑆)
26 elfznn0 13588 . . . . . . . . . . . . 13 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
27 ffvelcdm 7056 . . . . . . . . . . . . 13 ((𝑎:ℕ0𝑆𝑘 ∈ ℕ0) → (𝑎𝑘) ∈ 𝑆)
2825, 26, 27syl2an 596 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ 𝑆)
2913, 28sseldd 3950 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℂ)
3029adantrl 716 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → (𝑎𝑘) ∈ ℂ)
31 simprl 770 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → 𝑧 ∈ ℂ)
3226ad2antll 729 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → 𝑘 ∈ ℕ0)
33 expcl 14051 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
3431, 32, 33syl2anc 584 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → (𝑧𝑘) ∈ ℂ)
3530, 34mulcld 11201 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → ((𝑎𝑘) · (𝑧𝑘)) ∈ ℂ)
36 eqid 2730 . . . . . . . . . 10 (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))
376mptex 7200 . . . . . . . . . . 11 (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))) ∈ V
3837a1i 11 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))) ∈ V)
39 fvex 6874 . . . . . . . . . . 11 (0g‘(ℂflds ℂ)) ∈ V
4039a1i 11 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (0g‘(ℂflds ℂ)) ∈ V)
4136, 8, 38, 40fsuppmptdm 9334 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘)))) finSupp (0g‘(ℂflds ℂ)))
423, 4, 5, 7, 8, 11, 35, 41pwsgsum 19919 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → ((ℂflds ℂ) Σg (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ (ℂfld Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑎𝑘) · (𝑧𝑘))))))
43 fzfid 13945 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → (0...𝑛) ∈ Fin)
4435anassrs 467 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · (𝑧𝑘)) ∈ ℂ)
4543, 44gsumfsum 21358 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑎𝑘) · (𝑧𝑘)))) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))
4645mpteq2dva 5203 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑧 ∈ ℂ ↦ (ℂfld Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑎𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
4742, 46eqtrd 2765 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → ((ℂflds ℂ) Σg (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
483pwsring 20240 . . . . . . . . . 10 ((ℂfld ∈ Ring ∧ ℂ ∈ V) → (ℂflds ℂ) ∈ Ring)
499, 6, 48mp2an 692 . . . . . . . . 9 (ℂflds ℂ) ∈ Ring
50 ringcmn 20198 . . . . . . . . 9 ((ℂflds ℂ) ∈ Ring → (ℂflds ℂ) ∈ CMnd)
5149, 50mp1i 13 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (ℂflds ℂ) ∈ CMnd)
52 cncrng 21307 . . . . . . . . . . 11 fld ∈ CRing
53 plypf1.e . . . . . . . . . . . 12 𝐸 = (eval1‘ℂfld)
54 eqid 2730 . . . . . . . . . . . 12 (Poly1‘ℂfld) = (Poly1‘ℂfld)
5553, 54, 3, 4evl1rhm 22226 . . . . . . . . . . 11 (ℂfld ∈ CRing → 𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ)))
5652, 55ax-mp 5 . . . . . . . . . 10 𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ))
57 plypf1.r . . . . . . . . . . . 12 𝑅 = (ℂflds 𝑆)
58 plypf1.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
59 plypf1.a . . . . . . . . . . . 12 𝐴 = (Base‘𝑃)
6054, 57, 58, 59subrgply1 22124 . . . . . . . . . . 11 (𝑆 ∈ (SubRing‘ℂfld) → 𝐴 ∈ (SubRing‘(Poly1‘ℂfld)))
6160adantr 480 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → 𝐴 ∈ (SubRing‘(Poly1‘ℂfld)))
62 rhmima 20520 . . . . . . . . . 10 ((𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ)) ∧ 𝐴 ∈ (SubRing‘(Poly1‘ℂfld))) → (𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)))
6356, 61, 62sylancr 587 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)))
64 subrgsubg 20493 . . . . . . . . 9 ((𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)) → (𝐸𝐴) ∈ (SubGrp‘(ℂflds ℂ)))
65 subgsubm 19087 . . . . . . . . 9 ((𝐸𝐴) ∈ (SubGrp‘(ℂflds ℂ)) → (𝐸𝐴) ∈ (SubMnd‘(ℂflds ℂ)))
6663, 64, 653syl 18 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝐸𝐴) ∈ (SubMnd‘(ℂflds ℂ)))
67 eqid 2730 . . . . . . . . . . . 12 (Base‘(ℂflds ℂ)) = (Base‘(ℂflds ℂ))
689a1i 11 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ℂfld ∈ Ring)
696a1i 11 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ℂ ∈ V)
70 fconst6g 6752 . . . . . . . . . . . . . 14 ((𝑎𝑘) ∈ ℂ → (ℂ × {(𝑎𝑘)}):ℂ⟶ℂ)
7129, 70syl 17 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎𝑘)}):ℂ⟶ℂ)
723, 4, 67pwselbasb 17458 . . . . . . . . . . . . . 14 ((ℂfld ∈ Ring ∧ ℂ ∈ V) → ((ℂ × {(𝑎𝑘)}) ∈ (Base‘(ℂflds ℂ)) ↔ (ℂ × {(𝑎𝑘)}):ℂ⟶ℂ))
739, 6, 72mp2an 692 . . . . . . . . . . . . 13 ((ℂ × {(𝑎𝑘)}) ∈ (Base‘(ℂflds ℂ)) ↔ (ℂ × {(𝑎𝑘)}):ℂ⟶ℂ)
7471, 73sylibr 234 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎𝑘)}) ∈ (Base‘(ℂflds ℂ)))
7534anass1rs 655 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → (𝑧𝑘) ∈ ℂ)
7675fmpttd 7090 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧𝑘)):ℂ⟶ℂ)
773, 4, 67pwselbasb 17458 . . . . . . . . . . . . . 14 ((ℂfld ∈ Ring ∧ ℂ ∈ V) → ((𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (Base‘(ℂflds ℂ)) ↔ (𝑧 ∈ ℂ ↦ (𝑧𝑘)):ℂ⟶ℂ))
789, 6, 77mp2an 692 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (Base‘(ℂflds ℂ)) ↔ (𝑧 ∈ ℂ ↦ (𝑧𝑘)):ℂ⟶ℂ)
7976, 78sylibr 234 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (Base‘(ℂflds ℂ)))
80 cnfldmul 21279 . . . . . . . . . . . 12 · = (.r‘ℂfld)
81 eqid 2730 . . . . . . . . . . . 12 (.r‘(ℂflds ℂ)) = (.r‘(ℂflds ℂ))
823, 67, 68, 69, 74, 79, 80, 81pwsmulrval 17461 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎𝑘)})(.r‘(ℂflds ℂ))(𝑧 ∈ ℂ ↦ (𝑧𝑘))) = ((ℂ × {(𝑎𝑘)}) ∘f · (𝑧 ∈ ℂ ↦ (𝑧𝑘))))
8329adantr 480 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → (𝑎𝑘) ∈ ℂ)
84 fconstmpt 5703 . . . . . . . . . . . . 13 (ℂ × {(𝑎𝑘)}) = (𝑧 ∈ ℂ ↦ (𝑎𝑘))
8584a1i 11 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎𝑘)}) = (𝑧 ∈ ℂ ↦ (𝑎𝑘)))
86 eqidd 2731 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧𝑘)) = (𝑧 ∈ ℂ ↦ (𝑧𝑘)))
8769, 83, 75, 85, 86offval2 7676 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎𝑘)}) ∘f · (𝑧 ∈ ℂ ↦ (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))
8882, 87eqtrd 2765 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎𝑘)})(.r‘(ℂflds ℂ))(𝑧 ∈ ℂ ↦ (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))
8963adantr 480 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)))
90 eqid 2730 . . . . . . . . . . . . . 14 (algSc‘(Poly1‘ℂfld)) = (algSc‘(Poly1‘ℂfld))
9153, 54, 4, 90evl1sca 22228 . . . . . . . . . . . . 13 ((ℂfld ∈ CRing ∧ (𝑎𝑘) ∈ ℂ) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘))) = (ℂ × {(𝑎𝑘)}))
9252, 29, 91sylancr 587 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘))) = (ℂ × {(𝑎𝑘)}))
93 eqid 2730 . . . . . . . . . . . . . . . 16 (Base‘(Poly1‘ℂfld)) = (Base‘(Poly1‘ℂfld))
9493, 67rhmf 20401 . . . . . . . . . . . . . . 15 (𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ)) → 𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ)))
9556, 94ax-mp 5 . . . . . . . . . . . . . 14 𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ))
96 ffn 6691 . . . . . . . . . . . . . 14 (𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ)) → 𝐸 Fn (Base‘(Poly1‘ℂfld)))
9795, 96mp1i 13 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐸 Fn (Base‘(Poly1‘ℂfld)))
9893subrgss 20488 . . . . . . . . . . . . . . 15 (𝐴 ∈ (SubRing‘(Poly1‘ℂfld)) → 𝐴 ⊆ (Base‘(Poly1‘ℂfld)))
9960, 98syl 17 . . . . . . . . . . . . . 14 (𝑆 ∈ (SubRing‘ℂfld) → 𝐴 ⊆ (Base‘(Poly1‘ℂfld)))
10099ad2antrr 726 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ⊆ (Base‘(Poly1‘ℂfld)))
101 simpll 766 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑆 ∈ (SubRing‘ℂfld))
10254, 90, 57, 58, 101, 59, 4, 29subrg1asclcl 22153 . . . . . . . . . . . . . 14 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘)) ∈ 𝐴 ↔ (𝑎𝑘) ∈ 𝑆))
10328, 102mpbird 257 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘)) ∈ 𝐴)
104 fnfvima 7210 . . . . . . . . . . . . 13 ((𝐸 Fn (Base‘(Poly1‘ℂfld)) ∧ 𝐴 ⊆ (Base‘(Poly1‘ℂfld)) ∧ ((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘)) ∈ 𝐴) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘))) ∈ (𝐸𝐴))
10597, 100, 103, 104syl3anc 1373 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘))) ∈ (𝐸𝐴))
10692, 105eqeltrrd 2830 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎𝑘)}) ∈ (𝐸𝐴))
10767subrgss 20488 . . . . . . . . . . . . . . . . 17 ((𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)) → (𝐸𝐴) ⊆ (Base‘(ℂflds ℂ)))
10889, 107syl 17 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸𝐴) ⊆ (Base‘(ℂflds ℂ)))
10960ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ (SubRing‘(Poly1‘ℂfld)))
110 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 (mulGrp‘(Poly1‘ℂfld)) = (mulGrp‘(Poly1‘ℂfld))
111110subrgsubm 20501 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ (SubRing‘(Poly1‘ℂfld)) → 𝐴 ∈ (SubMnd‘(mulGrp‘(Poly1‘ℂfld))))
112109, 111syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ (SubMnd‘(mulGrp‘(Poly1‘ℂfld))))
11326adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0)
114 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (var1‘ℂfld) = (var1‘ℂfld)
115114, 101, 57, 58, 59subrgvr1cl 22155 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (var1‘ℂfld) ∈ 𝐴)
116 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (.g‘(mulGrp‘(Poly1‘ℂfld))) = (.g‘(mulGrp‘(Poly1‘ℂfld)))
117116submmulgcl 19056 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (SubMnd‘(mulGrp‘(Poly1‘ℂfld))) ∧ 𝑘 ∈ ℕ0 ∧ (var1‘ℂfld) ∈ 𝐴) → (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ 𝐴)
118112, 113, 115, 117syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ 𝐴)
119 fnfvima 7210 . . . . . . . . . . . . . . . . 17 ((𝐸 Fn (Base‘(Poly1‘ℂfld)) ∧ 𝐴 ⊆ (Base‘(Poly1‘ℂfld)) ∧ (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ 𝐴) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (𝐸𝐴))
12097, 100, 118, 119syl3anc 1373 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (𝐸𝐴))
121108, 120sseldd 3950 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(ℂflds ℂ)))
1223, 4, 67, 68, 69, 121pwselbas 17459 . . . . . . . . . . . . . 14 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))):ℂ⟶ℂ)
123122feqmptd 6932 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) = (𝑧 ∈ ℂ ↦ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧)))
12452a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ℂfld ∈ CRing)
125 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
12653, 114, 4, 54, 93, 124, 125evl1vard 22231 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ((var1‘ℂfld) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(var1‘ℂfld))‘𝑧) = 𝑧))
127 eqid 2730 . . . . . . . . . . . . . . . . 17 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
128113adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℕ0)
12953, 54, 4, 93, 124, 125, 126, 116, 127, 128evl1expd 22239 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧)))
130129simprd 495 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧))
131 cnfldexp 21323 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘ℂfld))𝑧) = (𝑧𝑘))
132125, 128, 131syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → (𝑘(.g‘(mulGrp‘ℂfld))𝑧) = (𝑧𝑘))
133130, 132eqtrd 2765 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧𝑘))
134133mpteq2dva 5203 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧)) = (𝑧 ∈ ℂ ↦ (𝑧𝑘)))
135123, 134eqtrd 2765 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) = (𝑧 ∈ ℂ ↦ (𝑧𝑘)))
136135, 120eqeltrrd 2830 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (𝐸𝐴))
13781subrgmcl 20500 . . . . . . . . . . 11 (((𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)) ∧ (ℂ × {(𝑎𝑘)}) ∈ (𝐸𝐴) ∧ (𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (𝐸𝐴)) → ((ℂ × {(𝑎𝑘)})(.r‘(ℂflds ℂ))(𝑧 ∈ ℂ ↦ (𝑧𝑘))) ∈ (𝐸𝐴))
13889, 106, 136, 137syl3anc 1373 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎𝑘)})(.r‘(ℂflds ℂ))(𝑧 ∈ ℂ ↦ (𝑧𝑘))) ∈ (𝐸𝐴))
13988, 138eqeltrrd 2830 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))) ∈ (𝐸𝐴))
140139fmpttd 7090 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘)))):(0...𝑛)⟶(𝐸𝐴))
14136, 8, 139, 40fsuppmptdm 9334 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘)))) finSupp (0g‘(ℂflds ℂ)))
1425, 51, 8, 66, 140, 141gsumsubmcl 19856 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → ((ℂflds ℂ) Σg (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))) ∈ (𝐸𝐴))
14347, 142eqeltrrd 2830 . . . . . 6 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ∈ (𝐸𝐴))
144 eleq1 2817 . . . . . 6 (𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → (𝑓 ∈ (𝐸𝐴) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ∈ (𝐸𝐴)))
145143, 144syl5ibrcom 247 . . . . 5 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝑓 ∈ (𝐸𝐴)))
146145rexlimdvva 3195 . . . 4 (𝑆 ∈ (SubRing‘ℂfld) → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝑓 ∈ (𝐸𝐴)))
1472, 146syl5 34 . . 3 (𝑆 ∈ (SubRing‘ℂfld) → (𝑓 ∈ (Poly‘𝑆) → 𝑓 ∈ (𝐸𝐴)))
148 ffun 6694 . . . . . 6 (𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ)) → Fun 𝐸)
14995, 148ax-mp 5 . . . . 5 Fun 𝐸
150 fvelima 6929 . . . . 5 ((Fun 𝐸𝑓 ∈ (𝐸𝐴)) → ∃𝑎𝐴 (𝐸𝑎) = 𝑓)
151149, 150mpan 690 . . . 4 (𝑓 ∈ (𝐸𝐴) → ∃𝑎𝐴 (𝐸𝑎) = 𝑓)
15299sselda 3949 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝑎 ∈ (Base‘(Poly1‘ℂfld)))
153 eqid 2730 . . . . . . . . . . . 12 ( ·𝑠 ‘(Poly1‘ℂfld)) = ( ·𝑠 ‘(Poly1‘ℂfld))
154 eqid 2730 . . . . . . . . . . . 12 (coe1𝑎) = (coe1𝑎)
15554, 114, 93, 153, 110, 116, 154ply1coe 22192 . . . . . . . . . . 11 ((ℂfld ∈ Ring ∧ 𝑎 ∈ (Base‘(Poly1‘ℂfld))) → 𝑎 = ((Poly1‘ℂfld) Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))))
1569, 152, 155sylancr 587 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝑎 = ((Poly1‘ℂfld) Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))))
157156fveq2d 6865 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸𝑎) = (𝐸‘((Poly1‘ℂfld) Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))))
158 eqid 2730 . . . . . . . . . 10 (0g‘(Poly1‘ℂfld)) = (0g‘(Poly1‘ℂfld))
15954ply1ring 22139 . . . . . . . . . . . 12 (ℂfld ∈ Ring → (Poly1‘ℂfld) ∈ Ring)
1609, 159ax-mp 5 . . . . . . . . . . 11 (Poly1‘ℂfld) ∈ Ring
161 ringcmn 20198 . . . . . . . . . . 11 ((Poly1‘ℂfld) ∈ Ring → (Poly1‘ℂfld) ∈ CMnd)
162160, 161mp1i 13 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (Poly1‘ℂfld) ∈ CMnd)
163 ringmnd 20159 . . . . . . . . . . 11 ((ℂflds ℂ) ∈ Ring → (ℂflds ℂ) ∈ Mnd)
16449, 163mp1i 13 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (ℂflds ℂ) ∈ Mnd)
165 nn0ex 12455 . . . . . . . . . . 11 0 ∈ V
166165a1i 11 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ℕ0 ∈ V)
167 rhmghm 20400 . . . . . . . . . . . 12 (𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ)) → 𝐸 ∈ ((Poly1‘ℂfld) GrpHom (ℂflds ℂ)))
16856, 167ax-mp 5 . . . . . . . . . . 11 𝐸 ∈ ((Poly1‘ℂfld) GrpHom (ℂflds ℂ))
169 ghmmhm 19165 . . . . . . . . . . 11 (𝐸 ∈ ((Poly1‘ℂfld) GrpHom (ℂflds ℂ)) → 𝐸 ∈ ((Poly1‘ℂfld) MndHom (ℂflds ℂ)))
170168, 169mp1i 13 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝐸 ∈ ((Poly1‘ℂfld) MndHom (ℂflds ℂ)))
17154ply1lmod 22143 . . . . . . . . . . . . 13 (ℂfld ∈ Ring → (Poly1‘ℂfld) ∈ LMod)
1729, 171mp1i 13 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (Poly1‘ℂfld) ∈ LMod)
17312ad2antrr 726 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → 𝑆 ⊆ ℂ)
174 eqid 2730 . . . . . . . . . . . . . . . . 17 (Base‘𝑅) = (Base‘𝑅)
175154, 59, 58, 174coe1f 22103 . . . . . . . . . . . . . . . 16 (𝑎𝐴 → (coe1𝑎):ℕ0⟶(Base‘𝑅))
17657subrgbas 20497 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 = (Base‘𝑅))
177176feq3d 6676 . . . . . . . . . . . . . . . 16 (𝑆 ∈ (SubRing‘ℂfld) → ((coe1𝑎):ℕ0𝑆 ↔ (coe1𝑎):ℕ0⟶(Base‘𝑅)))
178175, 177imbitrrid 246 . . . . . . . . . . . . . . 15 (𝑆 ∈ (SubRing‘ℂfld) → (𝑎𝐴 → (coe1𝑎):ℕ0𝑆))
179178imp 406 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (coe1𝑎):ℕ0𝑆)
180179ffvelcdmda 7059 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑎)‘𝑘) ∈ 𝑆)
181173, 180sseldd 3950 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑎)‘𝑘) ∈ ℂ)
182110, 93mgpbas 20061 . . . . . . . . . . . . 13 (Base‘(Poly1‘ℂfld)) = (Base‘(mulGrp‘(Poly1‘ℂfld)))
183110ringmgp 20155 . . . . . . . . . . . . . 14 ((Poly1‘ℂfld) ∈ Ring → (mulGrp‘(Poly1‘ℂfld)) ∈ Mnd)
184160, 183mp1i 13 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘(Poly1‘ℂfld)) ∈ Mnd)
185 simpr 484 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
186114, 54, 93vr1cl 22109 . . . . . . . . . . . . . 14 (ℂfld ∈ Ring → (var1‘ℂfld) ∈ (Base‘(Poly1‘ℂfld)))
1879, 186mp1i 13 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (var1‘ℂfld) ∈ (Base‘(Poly1‘ℂfld)))
188182, 116, 184, 185, 187mulgnn0cld 19034 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)))
18954ply1sca 22144 . . . . . . . . . . . . . 14 (ℂfld ∈ Ring → ℂfld = (Scalar‘(Poly1‘ℂfld)))
1909, 189ax-mp 5 . . . . . . . . . . . . 13 fld = (Scalar‘(Poly1‘ℂfld))
19193, 190, 153, 4lmodvscl 20791 . . . . . . . . . . . 12 (((Poly1‘ℂfld) ∈ LMod ∧ ((coe1𝑎)‘𝑘) ∈ ℂ ∧ (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld))) → (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(Poly1‘ℂfld)))
192172, 181, 188, 191syl3anc 1373 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(Poly1‘ℂfld)))
193192fmpttd 7090 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))):ℕ0⟶(Base‘(Poly1‘ℂfld)))
194165mptex 7200 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ V
195 funmpt 6557 . . . . . . . . . . . . 13 Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
196 fvex 6874 . . . . . . . . . . . . 13 (0g‘(Poly1‘ℂfld)) ∈ V
197194, 195, 1963pm3.2i 1340 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∧ (0g‘(Poly1‘ℂfld)) ∈ V)
198197a1i 11 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∧ (0g‘(Poly1‘ℂfld)) ∈ V))
199154, 93, 54, 17coe1sfi 22105 . . . . . . . . . . . . 13 (𝑎 ∈ (Base‘(Poly1‘ℂfld)) → (coe1𝑎) finSupp 0)
200152, 199syl 17 . . . . . . . . . . . 12 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (coe1𝑎) finSupp 0)
201200fsuppimpd 9327 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((coe1𝑎) supp 0) ∈ Fin)
202179feqmptd 6932 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (coe1𝑎) = (𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)))
203202oveq1d 7405 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((coe1𝑎) supp 0) = ((𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)) supp 0))
204 eqimss2 4009 . . . . . . . . . . . . 13 (((coe1𝑎) supp 0) = ((𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)) supp 0) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)) supp 0) ⊆ ((coe1𝑎) supp 0))
205203, 204syl 17 . . . . . . . . . . . 12 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)) supp 0) ⊆ ((coe1𝑎) supp 0))
2069, 171mp1i 13 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (Poly1‘ℂfld) ∈ LMod)
20793, 190, 153, 17, 158lmod0vs 20808 . . . . . . . . . . . . 13 (((Poly1‘ℂfld) ∈ LMod ∧ 𝑥 ∈ (Base‘(Poly1‘ℂfld))) → (0( ·𝑠 ‘(Poly1‘ℂfld))𝑥) = (0g‘(Poly1‘ℂfld)))
208206, 207sylan 580 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑥 ∈ (Base‘(Poly1‘ℂfld))) → (0( ·𝑠 ‘(Poly1‘ℂfld))𝑥) = (0g‘(Poly1‘ℂfld)))
209 c0ex 11175 . . . . . . . . . . . . 13 0 ∈ V
210209a1i 11 . . . . . . . . . . . 12 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 0 ∈ V)
211205, 208, 180, 188, 210suppssov1 8179 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) supp (0g‘(Poly1‘ℂfld))) ⊆ ((coe1𝑎) supp 0))
212 suppssfifsupp 9338 . . . . . . . . . . 11 ((((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∧ (0g‘(Poly1‘ℂfld)) ∈ V) ∧ (((coe1𝑎) supp 0) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) supp (0g‘(Poly1‘ℂfld))) ⊆ ((coe1𝑎) supp 0))) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) finSupp (0g‘(Poly1‘ℂfld)))
213198, 201, 211, 212syl12anc 836 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) finSupp (0g‘(Poly1‘ℂfld)))
21493, 158, 162, 164, 166, 170, 193, 213gsummhm 19875 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((ℂflds ℂ) Σg (𝐸 ∘ (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))) = (𝐸‘((Poly1‘ℂfld) Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))))
21595a1i 11 . . . . . . . . . . . 12 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ)))
216215, 192cofmpt 7107 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸 ∘ (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))) = (𝑘 ∈ ℕ0 ↦ (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))))
2179a1i 11 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → ℂfld ∈ Ring)
2186a1i 11 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → ℂ ∈ V)
21995ffvelcdmi 7058 . . . . . . . . . . . . . . . 16 ((((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(Poly1‘ℂfld)) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ (Base‘(ℂflds ℂ)))
220192, 219syl 17 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ (Base‘(ℂflds ℂ)))
2213, 4, 67, 217, 218, 220pwselbas 17459 . . . . . . . . . . . . . 14 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))):ℂ⟶ℂ)
222221feqmptd 6932 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) = (𝑧 ∈ ℂ ↦ ((𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧)))
22352a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ℂfld ∈ CRing)
224 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
22553, 114, 4, 54, 93, 223, 224evl1vard 22231 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((var1‘ℂfld) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(var1‘ℂfld))‘𝑧) = 𝑧))
226185adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℕ0)
22753, 54, 4, 93, 223, 224, 225, 116, 127, 226evl1expd 22239 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧)))
228224, 226, 131syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝑘(.g‘(mulGrp‘ℂfld))𝑧) = (𝑧𝑘))
229228eqeq2d 2741 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧) ↔ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧𝑘)))
230229anbi2d 630 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧)) ↔ ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧𝑘))))
231227, 230mpbid 232 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧𝑘)))
232181adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((coe1𝑎)‘𝑘) ∈ ℂ)
23353, 54, 4, 93, 223, 224, 231, 232, 153, 80evl1vsd 22238 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧) = (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
234233simprd 495 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧) = (((coe1𝑎)‘𝑘) · (𝑧𝑘)))
235234mpteq2dva 5203 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ ((𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧)) = (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
236222, 235eqtrd 2765 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) = (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
237236mpteq2dva 5203 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑘 ∈ ℕ0 ↦ (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))) = (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))))
238216, 237eqtrd 2765 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸 ∘ (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))) = (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))))
239238oveq2d 7406 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((ℂflds ℂ) Σg (𝐸 ∘ (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))) = ((ℂflds ℂ) Σg (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))))
240157, 214, 2393eqtr2d 2771 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸𝑎) = ((ℂflds ℂ) Σg (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))))
2416a1i 11 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ℂ ∈ V)
2429, 10mp1i 13 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ℂfld ∈ CMnd)
243181adantlr 715 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑎)‘𝑘) ∈ ℂ)
24433adantll 714 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
245243, 244mulcld 11201 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) ∈ ℂ)
246245anasss 466 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) ∈ ℂ)
247165mptex 7200 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∈ V
248 funmpt 6557 . . . . . . . . . . . 12 Fun (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
249247, 248, 393pm3.2i 1340 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∧ (0g‘(ℂflds ℂ)) ∈ V)
250249a1i 11 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∧ (0g‘(ℂflds ℂ)) ∈ V))
251 fzfid 13945 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)) ∈ Fin)
252 eldifn 4098 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0))) → ¬ 𝑘 ∈ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))
253252adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → ¬ 𝑘 ∈ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))
254152ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → 𝑎 ∈ (Base‘(Poly1‘ℂfld)))
255 eldifi 4097 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0))) → 𝑘 ∈ ℕ0)
256255adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → 𝑘 ∈ ℕ0)
257 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . 24 (deg1‘ℂfld) = (deg1‘ℂfld)
258257, 54, 93, 17, 154deg1ge 26010 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ (Base‘(Poly1‘ℂfld)) ∧ 𝑘 ∈ ℕ0 ∧ ((coe1𝑎)‘𝑘) ≠ 0) → 𝑘 ≤ ((deg1‘ℂfld)‘𝑎))
2592583expia 1121 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ (Base‘(Poly1‘ℂfld)) ∧ 𝑘 ∈ ℕ0) → (((coe1𝑎)‘𝑘) ≠ 0 → 𝑘 ≤ ((deg1‘ℂfld)‘𝑎)))
260254, 256, 259syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) ≠ 0 → 𝑘 ≤ ((deg1‘ℂfld)‘𝑎)))
261 0xr 11228 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℝ*
262257, 54, 93deg1xrcl 25994 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ (Base‘(Poly1‘ℂfld)) → ((deg1‘ℂfld)‘𝑎) ∈ ℝ*)
263152, 262syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((deg1‘ℂfld)‘𝑎) ∈ ℝ*)
264263ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → ((deg1‘ℂfld)‘𝑎) ∈ ℝ*)
265 xrmax2 13143 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ* ∧ ((deg1‘ℂfld)‘𝑎) ∈ ℝ*) → ((deg1‘ℂfld)‘𝑎) ≤ if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0))
266261, 264, 265sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → ((deg1‘ℂfld)‘𝑎) ≤ if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0))
267256nn0red 12511 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → 𝑘 ∈ ℝ)
268267rexrd 11231 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → 𝑘 ∈ ℝ*)
269 ifcl 4537 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((deg1‘ℂfld)‘𝑎) ∈ ℝ* ∧ 0 ∈ ℝ*) → if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0) ∈ ℝ*)
270264, 261, 269sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0) ∈ ℝ*)
271 xrletr 13125 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ* ∧ ((deg1‘ℂfld)‘𝑎) ∈ ℝ* ∧ if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0) ∈ ℝ*) → ((𝑘 ≤ ((deg1‘ℂfld)‘𝑎) ∧ ((deg1‘ℂfld)‘𝑎) ≤ if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)) → 𝑘 ≤ if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))
272268, 264, 270, 271syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → ((𝑘 ≤ ((deg1‘ℂfld)‘𝑎) ∧ ((deg1‘ℂfld)‘𝑎) ≤ if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)) → 𝑘 ≤ if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))
273266, 272mpan2d 694 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → (𝑘 ≤ ((deg1‘ℂfld)‘𝑎) → 𝑘 ≤ if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))
274260, 273syld 47 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) ≠ 0 → 𝑘 ≤ if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))
275274, 256jctild 525 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) ≠ 0 → (𝑘 ∈ ℕ0𝑘 ≤ if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0))))
276257, 54, 93deg1cl 25995 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 ∈ (Base‘(Poly1‘ℂfld)) → ((deg1‘ℂfld)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
277152, 276syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((deg1‘ℂfld)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
278 elun 4119 . . . . . . . . . . . . . . . . . . . . . . 23 (((deg1‘ℂfld)‘𝑎) ∈ (ℕ0 ∪ {-∞}) ↔ (((deg1‘ℂfld)‘𝑎) ∈ ℕ0 ∨ ((deg1‘ℂfld)‘𝑎) ∈ {-∞}))
279277, 278sylib 218 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (((deg1‘ℂfld)‘𝑎) ∈ ℕ0 ∨ ((deg1‘ℂfld)‘𝑎) ∈ {-∞}))
280 nn0ge0 12474 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((deg1‘ℂfld)‘𝑎) ∈ ℕ0 → 0 ≤ ((deg1‘ℂfld)‘𝑎))
281280iftrued 4499 . . . . . . . . . . . . . . . . . . . . . . . 24 (((deg1‘ℂfld)‘𝑎) ∈ ℕ0 → if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0) = ((deg1‘ℂfld)‘𝑎))
282 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 (((deg1‘ℂfld)‘𝑎) ∈ ℕ0 → ((deg1‘ℂfld)‘𝑎) ∈ ℕ0)
283281, 282eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . 23 (((deg1‘ℂfld)‘𝑎) ∈ ℕ0 → if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0) ∈ ℕ0)
284 mnflt0 13092 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 -∞ < 0
285 mnfxr 11238 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 -∞ ∈ ℝ*
286 xrltnle 11248 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞))
287285, 261, 286mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (-∞ < 0 ↔ ¬ 0 ≤ -∞)
288284, 287mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ¬ 0 ≤ -∞
289 elsni 4609 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((deg1‘ℂfld)‘𝑎) ∈ {-∞} → ((deg1‘ℂfld)‘𝑎) = -∞)
290289breq2d 5122 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((deg1‘ℂfld)‘𝑎) ∈ {-∞} → (0 ≤ ((deg1‘ℂfld)‘𝑎) ↔ 0 ≤ -∞))
291288, 290mtbiri 327 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((deg1‘ℂfld)‘𝑎) ∈ {-∞} → ¬ 0 ≤ ((deg1‘ℂfld)‘𝑎))
292291iffalsed 4502 . . . . . . . . . . . . . . . . . . . . . . . 24 (((deg1‘ℂfld)‘𝑎) ∈ {-∞} → if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0) = 0)
293 0nn0 12464 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℕ0
294292, 293eqeltrdi 2837 . . . . . . . . . . . . . . . . . . . . . . 23 (((deg1‘ℂfld)‘𝑎) ∈ {-∞} → if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0) ∈ ℕ0)
295283, 294jaoi 857 . . . . . . . . . . . . . . . . . . . . . 22 ((((deg1‘ℂfld)‘𝑎) ∈ ℕ0 ∨ ((deg1‘ℂfld)‘𝑎) ∈ {-∞}) → if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0) ∈ ℕ0)
296279, 295syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0) ∈ ℕ0)
297296ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0) ∈ ℕ0)
298 fznn0 13587 . . . . . . . . . . . . . . . . . . . 20 (if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0) ∈ ℕ0 → (𝑘 ∈ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)) ↔ (𝑘 ∈ ℕ0𝑘 ≤ if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0))))
299297, 298syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → (𝑘 ∈ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)) ↔ (𝑘 ∈ ℕ0𝑘 ≤ if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0))))
300275, 299sylibrd 259 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) ≠ 0 → 𝑘 ∈ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0))))
301300necon1bd 2944 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → (¬ 𝑘 ∈ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)) → ((coe1𝑎)‘𝑘) = 0))
302253, 301mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → ((coe1𝑎)‘𝑘) = 0)
303302oveq1d 7405 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) = (0 · (𝑧𝑘)))
304255, 244sylan2 593 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → (𝑧𝑘) ∈ ℂ)
305304mul02d 11379 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → (0 · (𝑧𝑘)) = 0)
306303, 305eqtrd 2765 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) = 0)
307306an32s 652 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) ∧ 𝑧 ∈ ℂ) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) = 0)
308307mpteq2dva 5203 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ 0))
309 fconstmpt 5703 . . . . . . . . . . . . 13 (ℂ × {0}) = (𝑧 ∈ ℂ ↦ 0)
310 ringmnd 20159 . . . . . . . . . . . . . . 15 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
3119, 310ax-mp 5 . . . . . . . . . . . . . 14 fld ∈ Mnd
3123, 17pws0g 18707 . . . . . . . . . . . . . 14 ((ℂfld ∈ Mnd ∧ ℂ ∈ V) → (ℂ × {0}) = (0g‘(ℂflds ℂ)))
313311, 6, 312mp2an 692 . . . . . . . . . . . . 13 (ℂ × {0}) = (0g‘(ℂflds ℂ))
314309, 313eqtr3i 2755 . . . . . . . . . . . 12 (𝑧 ∈ ℂ ↦ 0) = (0g‘(ℂflds ℂ))
315308, 314eqtrdi 2781 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) = (0g‘(ℂflds ℂ)))
316315, 166suppss2 8182 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) supp (0g‘(ℂflds ℂ))) ⊆ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))
317 suppssfifsupp 9338 . . . . . . . . . 10 ((((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∧ (0g‘(ℂflds ℂ)) ∈ V) ∧ ((0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) supp (0g‘(ℂflds ℂ))) ⊆ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) finSupp (0g‘(ℂflds ℂ)))
318250, 251, 316, 317syl12anc 836 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) finSupp (0g‘(ℂflds ℂ)))
3193, 4, 5, 241, 166, 242, 246, 318pwsgsum 19919 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((ℂflds ℂ) Σg (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ (ℂfld Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))))
320 fz0ssnn0 13590 . . . . . . . . . . . 12 (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)) ⊆ ℕ0
321 resmpt 6011 . . . . . . . . . . . 12 ((0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)) ⊆ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ↾ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0))) = (𝑘 ∈ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)) ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
322320, 321ax-mp 5 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ↾ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0))) = (𝑘 ∈ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)) ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))
323322oveq2i 7401 . . . . . . . . . 10 (ℂfld Σg ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ↾ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) = (ℂfld Σg (𝑘 ∈ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)) ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
3249, 10mp1i 13 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → ℂfld ∈ CMnd)
325165a1i 11 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → ℕ0 ∈ V)
326245fmpttd 7090 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))):ℕ0⟶ℂ)
327306, 325suppss2 8182 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) supp 0) ⊆ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))
328165mptex 7200 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ V
329 funmpt 6557 . . . . . . . . . . . . . 14 Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))
330328, 329, 2093pm3.2i 1340 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∧ 0 ∈ V)
331330a1i 11 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∧ 0 ∈ V))
332 fzfid 13945 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)) ∈ Fin)
333 suppssfifsupp 9338 . . . . . . . . . . . 12 ((((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∧ 0 ∈ V) ∧ ((0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) supp 0) ⊆ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) finSupp 0)
334331, 332, 327, 333syl12anc 836 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) finSupp 0)
3354, 17, 324, 325, 326, 327, 334gsumres 19850 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (ℂfld Σg ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ↾ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)))) = (ℂfld Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))))
336 elfznn0 13588 . . . . . . . . . . . 12 (𝑘 ∈ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)) → 𝑘 ∈ ℕ0)
337336, 245sylan2 593 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0))) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) ∈ ℂ)
338332, 337gsumfsum 21358 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0)) ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) = Σ𝑘 ∈ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘)))
339323, 335, 3383eqtr3a 2789 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) = Σ𝑘 ∈ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘)))
340339mpteq2dva 5203 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑧 ∈ ℂ ↦ (ℂfld Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘))))
341240, 319, 3403eqtrd 2769 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸𝑎) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘))))
34212adantr 480 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝑆 ⊆ ℂ)
343 elplyr 26113 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0) ∈ ℕ0 ∧ (coe1𝑎):ℕ0𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆))
344342, 296, 179, 343syl3anc 1373 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ ((deg1‘ℂfld)‘𝑎), ((deg1‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆))
345341, 344eqeltrd 2829 . . . . . 6 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸𝑎) ∈ (Poly‘𝑆))
346 eleq1 2817 . . . . . 6 ((𝐸𝑎) = 𝑓 → ((𝐸𝑎) ∈ (Poly‘𝑆) ↔ 𝑓 ∈ (Poly‘𝑆)))
347345, 346syl5ibcom 245 . . . . 5 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝐸𝑎) = 𝑓𝑓 ∈ (Poly‘𝑆)))
348347rexlimdva 3135 . . . 4 (𝑆 ∈ (SubRing‘ℂfld) → (∃𝑎𝐴 (𝐸𝑎) = 𝑓𝑓 ∈ (Poly‘𝑆)))
349151, 348syl5 34 . . 3 (𝑆 ∈ (SubRing‘ℂfld) → (𝑓 ∈ (𝐸𝐴) → 𝑓 ∈ (Poly‘𝑆)))
350147, 349impbid 212 . 2 (𝑆 ∈ (SubRing‘ℂfld) → (𝑓 ∈ (Poly‘𝑆) ↔ 𝑓 ∈ (𝐸𝐴)))
351350eqrdv 2728 1 (𝑆 ∈ (SubRing‘ℂfld) → (Poly‘𝑆) = (𝐸𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  Vcvv 3450  cdif 3914  cun 3915  wss 3917  ifcif 4491  {csn 4592   class class class wbr 5110  cmpt 5191   × cxp 5639  cres 5643  cima 5644  ccom 5645  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654   supp csupp 8142  m cmap 8802  Fincfn 8921   finSupp cfsupp 9319  cc 11073  0cc0 11075   · cmul 11080  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  0cn0 12449  ...cfz 13475  cexp 14033  Σcsu 15659  Basecbs 17186  s cress 17207  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409   Σg cgsu 17410  s cpws 17416  Mndcmnd 18668   MndHom cmhm 18715  SubMndcsubmnd 18716  .gcmg 19006  SubGrpcsubg 19059   GrpHom cghm 19151  CMndccmn 19717  mulGrpcmgp 20056  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385  SubRingcsubrg 20485  LModclmod 20773  fldccnfld 21271  algSccascl 21768  var1cv1 22067  Poly1cpl1 22068  coe1cco1 22069  eval1ce1 22208  deg1cdg1 25966  Polycply 26096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-cnfld 21272  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evl1 22210  df-mdeg 25967  df-deg1 25968  df-ply 26100
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator