MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plypf1 Structured version   Visualization version   GIF version

Theorem plypf1 25382
Description: Write the set of complex polynomials in a subring in terms of the abstract polynomial construction. (Contributed by Mario Carneiro, 3-Jul-2015.) (Proof shortened by AV, 29-Sep-2019.)
Hypotheses
Ref Expression
plypf1.r 𝑅 = (ℂflds 𝑆)
plypf1.p 𝑃 = (Poly1𝑅)
plypf1.a 𝐴 = (Base‘𝑃)
plypf1.e 𝐸 = (eval1‘ℂfld)
Assertion
Ref Expression
plypf1 (𝑆 ∈ (SubRing‘ℂfld) → (Poly‘𝑆) = (𝐸𝐴))

Proof of Theorem plypf1
Dummy variables 𝑓 𝑎 𝑘 𝑛 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 25365 . . . . 5 (𝑓 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
21simprbi 497 . . . 4 (𝑓 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
3 eqid 2739 . . . . . . . . 9 (ℂflds ℂ) = (ℂflds ℂ)
4 cnfldbas 20610 . . . . . . . . 9 ℂ = (Base‘ℂfld)
5 eqid 2739 . . . . . . . . 9 (0g‘(ℂflds ℂ)) = (0g‘(ℂflds ℂ))
6 cnex 10961 . . . . . . . . . 10 ℂ ∈ V
76a1i 11 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → ℂ ∈ V)
8 fzfid 13702 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (0...𝑛) ∈ Fin)
9 cnring 20629 . . . . . . . . . 10 fld ∈ Ring
10 ringcmn 19829 . . . . . . . . . 10 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
119, 10mp1i 13 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → ℂfld ∈ CMnd)
124subrgss 20034 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
1312ad2antrr 723 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑆 ⊆ ℂ)
14 elmapi 8646 . . . . . . . . . . . . . . 15 (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
1514ad2antll 726 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
16 subrgsubg 20039 . . . . . . . . . . . . . . . . . . 19 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld))
17 cnfld0 20631 . . . . . . . . . . . . . . . . . . . 20 0 = (0g‘ℂfld)
1817subg0cl 18772 . . . . . . . . . . . . . . . . . . 19 (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆)
1916, 18syl 17 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ (SubRing‘ℂfld) → 0 ∈ 𝑆)
2019adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → 0 ∈ 𝑆)
2120snssd 4743 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → {0} ⊆ 𝑆)
22 ssequn2 4118 . . . . . . . . . . . . . . . 16 ({0} ⊆ 𝑆 ↔ (𝑆 ∪ {0}) = 𝑆)
2321, 22sylib 217 . . . . . . . . . . . . . . 15 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑆 ∪ {0}) = 𝑆)
2423feq3d 6596 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑎:ℕ0⟶(𝑆 ∪ {0}) ↔ 𝑎:ℕ0𝑆))
2515, 24mpbid 231 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → 𝑎:ℕ0𝑆)
26 elfznn0 13358 . . . . . . . . . . . . 13 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
27 ffvelrn 6968 . . . . . . . . . . . . 13 ((𝑎:ℕ0𝑆𝑘 ∈ ℕ0) → (𝑎𝑘) ∈ 𝑆)
2825, 26, 27syl2an 596 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ 𝑆)
2913, 28sseldd 3923 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℂ)
3029adantrl 713 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → (𝑎𝑘) ∈ ℂ)
31 simprl 768 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → 𝑧 ∈ ℂ)
3226ad2antll 726 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → 𝑘 ∈ ℕ0)
33 expcl 13809 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
3431, 32, 33syl2anc 584 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → (𝑧𝑘) ∈ ℂ)
3530, 34mulcld 11004 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → ((𝑎𝑘) · (𝑧𝑘)) ∈ ℂ)
36 eqid 2739 . . . . . . . . . 10 (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))
376mptex 7108 . . . . . . . . . . 11 (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))) ∈ V
3837a1i 11 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))) ∈ V)
39 fvex 6796 . . . . . . . . . . 11 (0g‘(ℂflds ℂ)) ∈ V
4039a1i 11 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (0g‘(ℂflds ℂ)) ∈ V)
4136, 8, 38, 40fsuppmptdm 9148 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘)))) finSupp (0g‘(ℂflds ℂ)))
423, 4, 5, 7, 8, 11, 35, 41pwsgsum 19592 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → ((ℂflds ℂ) Σg (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ (ℂfld Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑎𝑘) · (𝑧𝑘))))))
43 fzfid 13702 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → (0...𝑛) ∈ Fin)
4435anassrs 468 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · (𝑧𝑘)) ∈ ℂ)
4543, 44gsumfsum 20674 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑎𝑘) · (𝑧𝑘)))) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))
4645mpteq2dva 5175 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑧 ∈ ℂ ↦ (ℂfld Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑎𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
4742, 46eqtrd 2779 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → ((ℂflds ℂ) Σg (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
483pwsring 19863 . . . . . . . . . 10 ((ℂfld ∈ Ring ∧ ℂ ∈ V) → (ℂflds ℂ) ∈ Ring)
499, 6, 48mp2an 689 . . . . . . . . 9 (ℂflds ℂ) ∈ Ring
50 ringcmn 19829 . . . . . . . . 9 ((ℂflds ℂ) ∈ Ring → (ℂflds ℂ) ∈ CMnd)
5149, 50mp1i 13 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (ℂflds ℂ) ∈ CMnd)
52 cncrng 20628 . . . . . . . . . . 11 fld ∈ CRing
53 plypf1.e . . . . . . . . . . . 12 𝐸 = (eval1‘ℂfld)
54 eqid 2739 . . . . . . . . . . . 12 (Poly1‘ℂfld) = (Poly1‘ℂfld)
5553, 54, 3, 4evl1rhm 21507 . . . . . . . . . . 11 (ℂfld ∈ CRing → 𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ)))
5652, 55ax-mp 5 . . . . . . . . . 10 𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ))
57 plypf1.r . . . . . . . . . . . 12 𝑅 = (ℂflds 𝑆)
58 plypf1.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
59 plypf1.a . . . . . . . . . . . 12 𝐴 = (Base‘𝑃)
6054, 57, 58, 59subrgply1 21413 . . . . . . . . . . 11 (𝑆 ∈ (SubRing‘ℂfld) → 𝐴 ∈ (SubRing‘(Poly1‘ℂfld)))
6160adantr 481 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → 𝐴 ∈ (SubRing‘(Poly1‘ℂfld)))
62 rhmima 20064 . . . . . . . . . 10 ((𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ)) ∧ 𝐴 ∈ (SubRing‘(Poly1‘ℂfld))) → (𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)))
6356, 61, 62sylancr 587 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)))
64 subrgsubg 20039 . . . . . . . . 9 ((𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)) → (𝐸𝐴) ∈ (SubGrp‘(ℂflds ℂ)))
65 subgsubm 18786 . . . . . . . . 9 ((𝐸𝐴) ∈ (SubGrp‘(ℂflds ℂ)) → (𝐸𝐴) ∈ (SubMnd‘(ℂflds ℂ)))
6663, 64, 653syl 18 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝐸𝐴) ∈ (SubMnd‘(ℂflds ℂ)))
67 eqid 2739 . . . . . . . . . . . 12 (Base‘(ℂflds ℂ)) = (Base‘(ℂflds ℂ))
689a1i 11 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ℂfld ∈ Ring)
696a1i 11 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ℂ ∈ V)
70 fconst6g 6672 . . . . . . . . . . . . . 14 ((𝑎𝑘) ∈ ℂ → (ℂ × {(𝑎𝑘)}):ℂ⟶ℂ)
7129, 70syl 17 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎𝑘)}):ℂ⟶ℂ)
723, 4, 67pwselbasb 17208 . . . . . . . . . . . . . 14 ((ℂfld ∈ Ring ∧ ℂ ∈ V) → ((ℂ × {(𝑎𝑘)}) ∈ (Base‘(ℂflds ℂ)) ↔ (ℂ × {(𝑎𝑘)}):ℂ⟶ℂ))
739, 6, 72mp2an 689 . . . . . . . . . . . . 13 ((ℂ × {(𝑎𝑘)}) ∈ (Base‘(ℂflds ℂ)) ↔ (ℂ × {(𝑎𝑘)}):ℂ⟶ℂ)
7471, 73sylibr 233 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎𝑘)}) ∈ (Base‘(ℂflds ℂ)))
7534anass1rs 652 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → (𝑧𝑘) ∈ ℂ)
7675fmpttd 6998 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧𝑘)):ℂ⟶ℂ)
773, 4, 67pwselbasb 17208 . . . . . . . . . . . . . 14 ((ℂfld ∈ Ring ∧ ℂ ∈ V) → ((𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (Base‘(ℂflds ℂ)) ↔ (𝑧 ∈ ℂ ↦ (𝑧𝑘)):ℂ⟶ℂ))
789, 6, 77mp2an 689 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (Base‘(ℂflds ℂ)) ↔ (𝑧 ∈ ℂ ↦ (𝑧𝑘)):ℂ⟶ℂ)
7976, 78sylibr 233 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (Base‘(ℂflds ℂ)))
80 cnfldmul 20612 . . . . . . . . . . . 12 · = (.r‘ℂfld)
81 eqid 2739 . . . . . . . . . . . 12 (.r‘(ℂflds ℂ)) = (.r‘(ℂflds ℂ))
823, 67, 68, 69, 74, 79, 80, 81pwsmulrval 17211 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎𝑘)})(.r‘(ℂflds ℂ))(𝑧 ∈ ℂ ↦ (𝑧𝑘))) = ((ℂ × {(𝑎𝑘)}) ∘f · (𝑧 ∈ ℂ ↦ (𝑧𝑘))))
8329adantr 481 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → (𝑎𝑘) ∈ ℂ)
84 fconstmpt 5650 . . . . . . . . . . . . 13 (ℂ × {(𝑎𝑘)}) = (𝑧 ∈ ℂ ↦ (𝑎𝑘))
8584a1i 11 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎𝑘)}) = (𝑧 ∈ ℂ ↦ (𝑎𝑘)))
86 eqidd 2740 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧𝑘)) = (𝑧 ∈ ℂ ↦ (𝑧𝑘)))
8769, 83, 75, 85, 86offval2 7562 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎𝑘)}) ∘f · (𝑧 ∈ ℂ ↦ (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))
8882, 87eqtrd 2779 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎𝑘)})(.r‘(ℂflds ℂ))(𝑧 ∈ ℂ ↦ (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))
8963adantr 481 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)))
90 eqid 2739 . . . . . . . . . . . . . 14 (algSc‘(Poly1‘ℂfld)) = (algSc‘(Poly1‘ℂfld))
9153, 54, 4, 90evl1sca 21509 . . . . . . . . . . . . 13 ((ℂfld ∈ CRing ∧ (𝑎𝑘) ∈ ℂ) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘))) = (ℂ × {(𝑎𝑘)}))
9252, 29, 91sylancr 587 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘))) = (ℂ × {(𝑎𝑘)}))
93 eqid 2739 . . . . . . . . . . . . . . . 16 (Base‘(Poly1‘ℂfld)) = (Base‘(Poly1‘ℂfld))
9493, 67rhmf 19979 . . . . . . . . . . . . . . 15 (𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ)) → 𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ)))
9556, 94ax-mp 5 . . . . . . . . . . . . . 14 𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ))
96 ffn 6609 . . . . . . . . . . . . . 14 (𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ)) → 𝐸 Fn (Base‘(Poly1‘ℂfld)))
9795, 96mp1i 13 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐸 Fn (Base‘(Poly1‘ℂfld)))
9893subrgss 20034 . . . . . . . . . . . . . . 15 (𝐴 ∈ (SubRing‘(Poly1‘ℂfld)) → 𝐴 ⊆ (Base‘(Poly1‘ℂfld)))
9960, 98syl 17 . . . . . . . . . . . . . 14 (𝑆 ∈ (SubRing‘ℂfld) → 𝐴 ⊆ (Base‘(Poly1‘ℂfld)))
10099ad2antrr 723 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ⊆ (Base‘(Poly1‘ℂfld)))
101 simpll 764 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑆 ∈ (SubRing‘ℂfld))
10254, 90, 57, 58, 101, 59, 4, 29subrg1asclcl 21440 . . . . . . . . . . . . . 14 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘)) ∈ 𝐴 ↔ (𝑎𝑘) ∈ 𝑆))
10328, 102mpbird 256 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘)) ∈ 𝐴)
104 fnfvima 7118 . . . . . . . . . . . . 13 ((𝐸 Fn (Base‘(Poly1‘ℂfld)) ∧ 𝐴 ⊆ (Base‘(Poly1‘ℂfld)) ∧ ((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘)) ∈ 𝐴) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘))) ∈ (𝐸𝐴))
10597, 100, 103, 104syl3anc 1370 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘))) ∈ (𝐸𝐴))
10692, 105eqeltrrd 2841 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎𝑘)}) ∈ (𝐸𝐴))
10767subrgss 20034 . . . . . . . . . . . . . . . . 17 ((𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)) → (𝐸𝐴) ⊆ (Base‘(ℂflds ℂ)))
10889, 107syl 17 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸𝐴) ⊆ (Base‘(ℂflds ℂ)))
10960ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ (SubRing‘(Poly1‘ℂfld)))
110 eqid 2739 . . . . . . . . . . . . . . . . . . . 20 (mulGrp‘(Poly1‘ℂfld)) = (mulGrp‘(Poly1‘ℂfld))
111110subrgsubm 20046 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ (SubRing‘(Poly1‘ℂfld)) → 𝐴 ∈ (SubMnd‘(mulGrp‘(Poly1‘ℂfld))))
112109, 111syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ (SubMnd‘(mulGrp‘(Poly1‘ℂfld))))
11326adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0)
114 eqid 2739 . . . . . . . . . . . . . . . . . . 19 (var1‘ℂfld) = (var1‘ℂfld)
115114, 101, 57, 58, 59subrgvr1cl 21442 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (var1‘ℂfld) ∈ 𝐴)
116 eqid 2739 . . . . . . . . . . . . . . . . . . 19 (.g‘(mulGrp‘(Poly1‘ℂfld))) = (.g‘(mulGrp‘(Poly1‘ℂfld)))
117116submmulgcl 18755 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (SubMnd‘(mulGrp‘(Poly1‘ℂfld))) ∧ 𝑘 ∈ ℕ0 ∧ (var1‘ℂfld) ∈ 𝐴) → (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ 𝐴)
118112, 113, 115, 117syl3anc 1370 . . . . . . . . . . . . . . . . 17 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ 𝐴)
119 fnfvima 7118 . . . . . . . . . . . . . . . . 17 ((𝐸 Fn (Base‘(Poly1‘ℂfld)) ∧ 𝐴 ⊆ (Base‘(Poly1‘ℂfld)) ∧ (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ 𝐴) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (𝐸𝐴))
12097, 100, 118, 119syl3anc 1370 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (𝐸𝐴))
121108, 120sseldd 3923 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(ℂflds ℂ)))
1223, 4, 67, 68, 69, 121pwselbas 17209 . . . . . . . . . . . . . 14 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))):ℂ⟶ℂ)
123122feqmptd 6846 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) = (𝑧 ∈ ℂ ↦ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧)))
12452a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ℂfld ∈ CRing)
125 simpr 485 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
12653, 114, 4, 54, 93, 124, 125evl1vard 21512 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ((var1‘ℂfld) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(var1‘ℂfld))‘𝑧) = 𝑧))
127 eqid 2739 . . . . . . . . . . . . . . . . 17 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
128113adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℕ0)
12953, 54, 4, 93, 124, 125, 126, 116, 127, 128evl1expd 21520 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧)))
130129simprd 496 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧))
131 cnfldexp 20640 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘ℂfld))𝑧) = (𝑧𝑘))
132125, 128, 131syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → (𝑘(.g‘(mulGrp‘ℂfld))𝑧) = (𝑧𝑘))
133130, 132eqtrd 2779 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧𝑘))
134133mpteq2dva 5175 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧)) = (𝑧 ∈ ℂ ↦ (𝑧𝑘)))
135123, 134eqtrd 2779 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) = (𝑧 ∈ ℂ ↦ (𝑧𝑘)))
136135, 120eqeltrrd 2841 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (𝐸𝐴))
13781subrgmcl 20045 . . . . . . . . . . 11 (((𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)) ∧ (ℂ × {(𝑎𝑘)}) ∈ (𝐸𝐴) ∧ (𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (𝐸𝐴)) → ((ℂ × {(𝑎𝑘)})(.r‘(ℂflds ℂ))(𝑧 ∈ ℂ ↦ (𝑧𝑘))) ∈ (𝐸𝐴))
13889, 106, 136, 137syl3anc 1370 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎𝑘)})(.r‘(ℂflds ℂ))(𝑧 ∈ ℂ ↦ (𝑧𝑘))) ∈ (𝐸𝐴))
13988, 138eqeltrrd 2841 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))) ∈ (𝐸𝐴))
140139fmpttd 6998 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘)))):(0...𝑛)⟶(𝐸𝐴))
14136, 8, 139, 40fsuppmptdm 9148 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘)))) finSupp (0g‘(ℂflds ℂ)))
1425, 51, 8, 66, 140, 141gsumsubmcl 19529 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → ((ℂflds ℂ) Σg (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))) ∈ (𝐸𝐴))
14347, 142eqeltrrd 2841 . . . . . 6 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ∈ (𝐸𝐴))
144 eleq1 2827 . . . . . 6 (𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → (𝑓 ∈ (𝐸𝐴) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ∈ (𝐸𝐴)))
145143, 144syl5ibrcom 246 . . . . 5 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝑓 ∈ (𝐸𝐴)))
146145rexlimdvva 3224 . . . 4 (𝑆 ∈ (SubRing‘ℂfld) → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝑓 ∈ (𝐸𝐴)))
1472, 146syl5 34 . . 3 (𝑆 ∈ (SubRing‘ℂfld) → (𝑓 ∈ (Poly‘𝑆) → 𝑓 ∈ (𝐸𝐴)))
148 ffun 6612 . . . . . 6 (𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ)) → Fun 𝐸)
14995, 148ax-mp 5 . . . . 5 Fun 𝐸
150 fvelima 6844 . . . . 5 ((Fun 𝐸𝑓 ∈ (𝐸𝐴)) → ∃𝑎𝐴 (𝐸𝑎) = 𝑓)
151149, 150mpan 687 . . . 4 (𝑓 ∈ (𝐸𝐴) → ∃𝑎𝐴 (𝐸𝑎) = 𝑓)
15299sselda 3922 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝑎 ∈ (Base‘(Poly1‘ℂfld)))
153 eqid 2739 . . . . . . . . . . . 12 ( ·𝑠 ‘(Poly1‘ℂfld)) = ( ·𝑠 ‘(Poly1‘ℂfld))
154 eqid 2739 . . . . . . . . . . . 12 (coe1𝑎) = (coe1𝑎)
15554, 114, 93, 153, 110, 116, 154ply1coe 21476 . . . . . . . . . . 11 ((ℂfld ∈ Ring ∧ 𝑎 ∈ (Base‘(Poly1‘ℂfld))) → 𝑎 = ((Poly1‘ℂfld) Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))))
1569, 152, 155sylancr 587 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝑎 = ((Poly1‘ℂfld) Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))))
157156fveq2d 6787 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸𝑎) = (𝐸‘((Poly1‘ℂfld) Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))))
158 eqid 2739 . . . . . . . . . 10 (0g‘(Poly1‘ℂfld)) = (0g‘(Poly1‘ℂfld))
15954ply1ring 21428 . . . . . . . . . . . 12 (ℂfld ∈ Ring → (Poly1‘ℂfld) ∈ Ring)
1609, 159ax-mp 5 . . . . . . . . . . 11 (Poly1‘ℂfld) ∈ Ring
161 ringcmn 19829 . . . . . . . . . . 11 ((Poly1‘ℂfld) ∈ Ring → (Poly1‘ℂfld) ∈ CMnd)
162160, 161mp1i 13 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (Poly1‘ℂfld) ∈ CMnd)
163 ringmnd 19802 . . . . . . . . . . 11 ((ℂflds ℂ) ∈ Ring → (ℂflds ℂ) ∈ Mnd)
16449, 163mp1i 13 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (ℂflds ℂ) ∈ Mnd)
165 nn0ex 12248 . . . . . . . . . . 11 0 ∈ V
166165a1i 11 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ℕ0 ∈ V)
167 rhmghm 19978 . . . . . . . . . . . 12 (𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ)) → 𝐸 ∈ ((Poly1‘ℂfld) GrpHom (ℂflds ℂ)))
16856, 167ax-mp 5 . . . . . . . . . . 11 𝐸 ∈ ((Poly1‘ℂfld) GrpHom (ℂflds ℂ))
169 ghmmhm 18853 . . . . . . . . . . 11 (𝐸 ∈ ((Poly1‘ℂfld) GrpHom (ℂflds ℂ)) → 𝐸 ∈ ((Poly1‘ℂfld) MndHom (ℂflds ℂ)))
170168, 169mp1i 13 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝐸 ∈ ((Poly1‘ℂfld) MndHom (ℂflds ℂ)))
17154ply1lmod 21432 . . . . . . . . . . . . 13 (ℂfld ∈ Ring → (Poly1‘ℂfld) ∈ LMod)
1729, 171mp1i 13 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (Poly1‘ℂfld) ∈ LMod)
17312ad2antrr 723 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → 𝑆 ⊆ ℂ)
174 eqid 2739 . . . . . . . . . . . . . . . . 17 (Base‘𝑅) = (Base‘𝑅)
175154, 59, 58, 174coe1f 21391 . . . . . . . . . . . . . . . 16 (𝑎𝐴 → (coe1𝑎):ℕ0⟶(Base‘𝑅))
17657subrgbas 20042 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 = (Base‘𝑅))
177176feq3d 6596 . . . . . . . . . . . . . . . 16 (𝑆 ∈ (SubRing‘ℂfld) → ((coe1𝑎):ℕ0𝑆 ↔ (coe1𝑎):ℕ0⟶(Base‘𝑅)))
178175, 177syl5ibr 245 . . . . . . . . . . . . . . 15 (𝑆 ∈ (SubRing‘ℂfld) → (𝑎𝐴 → (coe1𝑎):ℕ0𝑆))
179178imp 407 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (coe1𝑎):ℕ0𝑆)
180179ffvelrnda 6970 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑎)‘𝑘) ∈ 𝑆)
181173, 180sseldd 3923 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑎)‘𝑘) ∈ ℂ)
182110ringmgp 19798 . . . . . . . . . . . . . 14 ((Poly1‘ℂfld) ∈ Ring → (mulGrp‘(Poly1‘ℂfld)) ∈ Mnd)
183160, 182mp1i 13 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘(Poly1‘ℂfld)) ∈ Mnd)
184 simpr 485 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
185114, 54, 93vr1cl 21397 . . . . . . . . . . . . . 14 (ℂfld ∈ Ring → (var1‘ℂfld) ∈ (Base‘(Poly1‘ℂfld)))
1869, 185mp1i 13 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (var1‘ℂfld) ∈ (Base‘(Poly1‘ℂfld)))
187110, 93mgpbas 19735 . . . . . . . . . . . . . 14 (Base‘(Poly1‘ℂfld)) = (Base‘(mulGrp‘(Poly1‘ℂfld)))
188187, 116mulgnn0cl 18729 . . . . . . . . . . . . 13 (((mulGrp‘(Poly1‘ℂfld)) ∈ Mnd ∧ 𝑘 ∈ ℕ0 ∧ (var1‘ℂfld) ∈ (Base‘(Poly1‘ℂfld))) → (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)))
189183, 184, 186, 188syl3anc 1370 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)))
19054ply1sca 21433 . . . . . . . . . . . . . 14 (ℂfld ∈ Ring → ℂfld = (Scalar‘(Poly1‘ℂfld)))
1919, 190ax-mp 5 . . . . . . . . . . . . 13 fld = (Scalar‘(Poly1‘ℂfld))
19293, 191, 153, 4lmodvscl 20149 . . . . . . . . . . . 12 (((Poly1‘ℂfld) ∈ LMod ∧ ((coe1𝑎)‘𝑘) ∈ ℂ ∧ (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld))) → (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(Poly1‘ℂfld)))
193172, 181, 189, 192syl3anc 1370 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(Poly1‘ℂfld)))
194193fmpttd 6998 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))):ℕ0⟶(Base‘(Poly1‘ℂfld)))
195165mptex 7108 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ V
196 funmpt 6479 . . . . . . . . . . . . 13 Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
197 fvex 6796 . . . . . . . . . . . . 13 (0g‘(Poly1‘ℂfld)) ∈ V
198195, 196, 1973pm3.2i 1338 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∧ (0g‘(Poly1‘ℂfld)) ∈ V)
199198a1i 11 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∧ (0g‘(Poly1‘ℂfld)) ∈ V))
200154, 93, 54, 17coe1sfi 21393 . . . . . . . . . . . . 13 (𝑎 ∈ (Base‘(Poly1‘ℂfld)) → (coe1𝑎) finSupp 0)
201152, 200syl 17 . . . . . . . . . . . 12 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (coe1𝑎) finSupp 0)
202201fsuppimpd 9144 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((coe1𝑎) supp 0) ∈ Fin)
203179feqmptd 6846 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (coe1𝑎) = (𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)))
204203oveq1d 7299 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((coe1𝑎) supp 0) = ((𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)) supp 0))
205 eqimss2 3979 . . . . . . . . . . . . 13 (((coe1𝑎) supp 0) = ((𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)) supp 0) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)) supp 0) ⊆ ((coe1𝑎) supp 0))
206204, 205syl 17 . . . . . . . . . . . 12 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)) supp 0) ⊆ ((coe1𝑎) supp 0))
2079, 171mp1i 13 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (Poly1‘ℂfld) ∈ LMod)
20893, 191, 153, 17, 158lmod0vs 20165 . . . . . . . . . . . . 13 (((Poly1‘ℂfld) ∈ LMod ∧ 𝑥 ∈ (Base‘(Poly1‘ℂfld))) → (0( ·𝑠 ‘(Poly1‘ℂfld))𝑥) = (0g‘(Poly1‘ℂfld)))
209207, 208sylan 580 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑥 ∈ (Base‘(Poly1‘ℂfld))) → (0( ·𝑠 ‘(Poly1‘ℂfld))𝑥) = (0g‘(Poly1‘ℂfld)))
210 c0ex 10978 . . . . . . . . . . . . 13 0 ∈ V
211210a1i 11 . . . . . . . . . . . 12 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 0 ∈ V)
212206, 209, 180, 189, 211suppssov1 8023 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) supp (0g‘(Poly1‘ℂfld))) ⊆ ((coe1𝑎) supp 0))
213 suppssfifsupp 9152 . . . . . . . . . . 11 ((((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∧ (0g‘(Poly1‘ℂfld)) ∈ V) ∧ (((coe1𝑎) supp 0) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) supp (0g‘(Poly1‘ℂfld))) ⊆ ((coe1𝑎) supp 0))) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) finSupp (0g‘(Poly1‘ℂfld)))
214199, 202, 212, 213syl12anc 834 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) finSupp (0g‘(Poly1‘ℂfld)))
21593, 158, 162, 164, 166, 170, 194, 214gsummhm 19548 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((ℂflds ℂ) Σg (𝐸 ∘ (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))) = (𝐸‘((Poly1‘ℂfld) Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))))
21695a1i 11 . . . . . . . . . . . 12 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ)))
217216, 193cofmpt 7013 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸 ∘ (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))) = (𝑘 ∈ ℕ0 ↦ (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))))
2189a1i 11 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → ℂfld ∈ Ring)
2196a1i 11 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → ℂ ∈ V)
22095ffvelrni 6969 . . . . . . . . . . . . . . . 16 ((((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(Poly1‘ℂfld)) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ (Base‘(ℂflds ℂ)))
221193, 220syl 17 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ (Base‘(ℂflds ℂ)))
2223, 4, 67, 218, 219, 221pwselbas 17209 . . . . . . . . . . . . . 14 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))):ℂ⟶ℂ)
223222feqmptd 6846 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) = (𝑧 ∈ ℂ ↦ ((𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧)))
22452a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ℂfld ∈ CRing)
225 simpr 485 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
22653, 114, 4, 54, 93, 224, 225evl1vard 21512 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((var1‘ℂfld) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(var1‘ℂfld))‘𝑧) = 𝑧))
227184adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℕ0)
22853, 54, 4, 93, 224, 225, 226, 116, 127, 227evl1expd 21520 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧)))
229225, 227, 131syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝑘(.g‘(mulGrp‘ℂfld))𝑧) = (𝑧𝑘))
230229eqeq2d 2750 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧) ↔ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧𝑘)))
231230anbi2d 629 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧)) ↔ ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧𝑘))))
232228, 231mpbid 231 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧𝑘)))
233181adantr 481 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((coe1𝑎)‘𝑘) ∈ ℂ)
23453, 54, 4, 93, 224, 225, 232, 233, 153, 80evl1vsd 21519 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧) = (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
235234simprd 496 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧) = (((coe1𝑎)‘𝑘) · (𝑧𝑘)))
236235mpteq2dva 5175 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ ((𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧)) = (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
237223, 236eqtrd 2779 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) = (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
238237mpteq2dva 5175 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑘 ∈ ℕ0 ↦ (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))) = (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))))
239217, 238eqtrd 2779 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸 ∘ (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))) = (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))))
240239oveq2d 7300 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((ℂflds ℂ) Σg (𝐸 ∘ (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))) = ((ℂflds ℂ) Σg (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))))
241157, 215, 2403eqtr2d 2785 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸𝑎) = ((ℂflds ℂ) Σg (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))))
2426a1i 11 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ℂ ∈ V)
2439, 10mp1i 13 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ℂfld ∈ CMnd)
244181adantlr 712 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑎)‘𝑘) ∈ ℂ)
24533adantll 711 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
246244, 245mulcld 11004 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) ∈ ℂ)
247246anasss 467 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) ∈ ℂ)
248165mptex 7108 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∈ V
249 funmpt 6479 . . . . . . . . . . . 12 Fun (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
250248, 249, 393pm3.2i 1338 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∧ (0g‘(ℂflds ℂ)) ∈ V)
251250a1i 11 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∧ (0g‘(ℂflds ℂ)) ∈ V))
252 fzfid 13702 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ∈ Fin)
253 eldifn 4063 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))) → ¬ 𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
254253adantl 482 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → ¬ 𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
255152ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → 𝑎 ∈ (Base‘(Poly1‘ℂfld)))
256 eldifi 4062 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))) → 𝑘 ∈ ℕ0)
257256adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → 𝑘 ∈ ℕ0)
258 eqid 2739 . . . . . . . . . . . . . . . . . . . . . . . 24 ( deg1 ‘ℂfld) = ( deg1 ‘ℂfld)
259258, 54, 93, 17, 154deg1ge 25272 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ (Base‘(Poly1‘ℂfld)) ∧ 𝑘 ∈ ℕ0 ∧ ((coe1𝑎)‘𝑘) ≠ 0) → 𝑘 ≤ (( deg1 ‘ℂfld)‘𝑎))
2602593expia 1120 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ (Base‘(Poly1‘ℂfld)) ∧ 𝑘 ∈ ℕ0) → (((coe1𝑎)‘𝑘) ≠ 0 → 𝑘 ≤ (( deg1 ‘ℂfld)‘𝑎)))
261255, 257, 260syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) ≠ 0 → 𝑘 ≤ (( deg1 ‘ℂfld)‘𝑎)))
262 0xr 11031 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℝ*
263258, 54, 93deg1xrcl 25256 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ (Base‘(Poly1‘ℂfld)) → (( deg1 ‘ℂfld)‘𝑎) ∈ ℝ*)
264152, 263syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (( deg1 ‘ℂfld)‘𝑎) ∈ ℝ*)
265264ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (( deg1 ‘ℂfld)‘𝑎) ∈ ℝ*)
266 xrmax2 12919 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ* ∧ (( deg1 ‘ℂfld)‘𝑎) ∈ ℝ*) → (( deg1 ‘ℂfld)‘𝑎) ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))
267262, 265, 266sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (( deg1 ‘ℂfld)‘𝑎) ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))
268257nn0red 12303 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → 𝑘 ∈ ℝ)
269268rexrd 11034 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → 𝑘 ∈ ℝ*)
270 ifcl 4505 . . . . . . . . . . . . . . . . . . . . . . . 24 (((( deg1 ‘ℂfld)‘𝑎) ∈ ℝ* ∧ 0 ∈ ℝ*) → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℝ*)
271265, 262, 270sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℝ*)
272 xrletr 12901 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ* ∧ (( deg1 ‘ℂfld)‘𝑎) ∈ ℝ* ∧ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℝ*) → ((𝑘 ≤ (( deg1 ‘ℂfld)‘𝑎) ∧ (( deg1 ‘ℂfld)‘𝑎) ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) → 𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
273269, 265, 271, 272syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → ((𝑘 ≤ (( deg1 ‘ℂfld)‘𝑎) ∧ (( deg1 ‘ℂfld)‘𝑎) ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) → 𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
274267, 273mpan2d 691 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑘 ≤ (( deg1 ‘ℂfld)‘𝑎) → 𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
275261, 274syld 47 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) ≠ 0 → 𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
276275, 257jctild 526 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) ≠ 0 → (𝑘 ∈ ℕ0𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))))
277258, 54, 93deg1cl 25257 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 ∈ (Base‘(Poly1‘ℂfld)) → (( deg1 ‘ℂfld)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
278152, 277syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (( deg1 ‘ℂfld)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
279 elun 4084 . . . . . . . . . . . . . . . . . . . . . . 23 ((( deg1 ‘ℂfld)‘𝑎) ∈ (ℕ0 ∪ {-∞}) ↔ ((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 ∨ (( deg1 ‘ℂfld)‘𝑎) ∈ {-∞}))
280278, 279sylib 217 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 ∨ (( deg1 ‘ℂfld)‘𝑎) ∈ {-∞}))
281 nn0ge0 12267 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 → 0 ≤ (( deg1 ‘ℂfld)‘𝑎))
282281iftrued 4468 . . . . . . . . . . . . . . . . . . . . . . . 24 ((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) = (( deg1 ‘ℂfld)‘𝑎))
283 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 ((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 → (( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0)
284282, 283eqeltrd 2840 . . . . . . . . . . . . . . . . . . . . . . 23 ((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0)
285 mnflt0 12870 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 -∞ < 0
286 mnfxr 11041 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 -∞ ∈ ℝ*
287 xrltnle 11051 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞))
288286, 262, 287mp2an 689 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (-∞ < 0 ↔ ¬ 0 ≤ -∞)
289285, 288mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ¬ 0 ≤ -∞
290 elsni 4579 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((( deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → (( deg1 ‘ℂfld)‘𝑎) = -∞)
291290breq2d 5087 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((( deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → (0 ≤ (( deg1 ‘ℂfld)‘𝑎) ↔ 0 ≤ -∞))
292289, 291mtbiri 327 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → ¬ 0 ≤ (( deg1 ‘ℂfld)‘𝑎))
293292iffalsed 4471 . . . . . . . . . . . . . . . . . . . . . . . 24 ((( deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) = 0)
294 0nn0 12257 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℕ0
295293, 294eqeltrdi 2848 . . . . . . . . . . . . . . . . . . . . . . 23 ((( deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0)
296284, 295jaoi 854 . . . . . . . . . . . . . . . . . . . . . 22 (((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 ∨ (( deg1 ‘ℂfld)‘𝑎) ∈ {-∞}) → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0)
297280, 296syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0)
298297ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0)
299 fznn0 13357 . . . . . . . . . . . . . . . . . . . 20 (if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0 → (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ↔ (𝑘 ∈ ℕ0𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))))
300298, 299syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ↔ (𝑘 ∈ ℕ0𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))))
301276, 300sylibrd 258 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) ≠ 0 → 𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))))
302301necon1bd 2962 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (¬ 𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) → ((coe1𝑎)‘𝑘) = 0))
303254, 302mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → ((coe1𝑎)‘𝑘) = 0)
304303oveq1d 7299 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) = (0 · (𝑧𝑘)))
305256, 245sylan2 593 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑧𝑘) ∈ ℂ)
306305mul02d 11182 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (0 · (𝑧𝑘)) = 0)
307304, 306eqtrd 2779 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) = 0)
308307an32s 649 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) ∧ 𝑧 ∈ ℂ) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) = 0)
309308mpteq2dva 5175 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ 0))
310 fconstmpt 5650 . . . . . . . . . . . . 13 (ℂ × {0}) = (𝑧 ∈ ℂ ↦ 0)
311 ringmnd 19802 . . . . . . . . . . . . . . 15 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
3129, 311ax-mp 5 . . . . . . . . . . . . . 14 fld ∈ Mnd
3133, 17pws0g 18430 . . . . . . . . . . . . . 14 ((ℂfld ∈ Mnd ∧ ℂ ∈ V) → (ℂ × {0}) = (0g‘(ℂflds ℂ)))
314312, 6, 313mp2an 689 . . . . . . . . . . . . 13 (ℂ × {0}) = (0g‘(ℂflds ℂ))
315310, 314eqtr3i 2769 . . . . . . . . . . . 12 (𝑧 ∈ ℂ ↦ 0) = (0g‘(ℂflds ℂ))
316309, 315eqtrdi 2795 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) = (0g‘(ℂflds ℂ)))
317316, 166suppss2 8025 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) supp (0g‘(ℂflds ℂ))) ⊆ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
318 suppssfifsupp 9152 . . . . . . . . . 10 ((((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∧ (0g‘(ℂflds ℂ)) ∈ V) ∧ ((0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) supp (0g‘(ℂflds ℂ))) ⊆ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) finSupp (0g‘(ℂflds ℂ)))
319251, 252, 317, 318syl12anc 834 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) finSupp (0g‘(ℂflds ℂ)))
3203, 4, 5, 242, 166, 243, 247, 319pwsgsum 19592 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((ℂflds ℂ) Σg (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ (ℂfld Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))))
321 fz0ssnn0 13360 . . . . . . . . . . . 12 (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ⊆ ℕ0
322 resmpt 5948 . . . . . . . . . . . 12 ((0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ⊆ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ↾ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))) = (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
323321, 322ax-mp 5 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ↾ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))) = (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))
324323oveq2i 7295 . . . . . . . . . 10 (ℂfld Σg ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ↾ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) = (ℂfld Σg (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
3259, 10mp1i 13 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → ℂfld ∈ CMnd)
326165a1i 11 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → ℕ0 ∈ V)
327246fmpttd 6998 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))):ℕ0⟶ℂ)
328307, 326suppss2 8025 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) supp 0) ⊆ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
329165mptex 7108 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ V
330 funmpt 6479 . . . . . . . . . . . . . 14 Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))
331329, 330, 2103pm3.2i 1338 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∧ 0 ∈ V)
332331a1i 11 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∧ 0 ∈ V))
333 fzfid 13702 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ∈ Fin)
334 suppssfifsupp 9152 . . . . . . . . . . . 12 ((((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∧ 0 ∈ V) ∧ ((0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) supp 0) ⊆ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) finSupp 0)
335332, 333, 328, 334syl12anc 834 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) finSupp 0)
3364, 17, 325, 326, 327, 328, 335gsumres 19523 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (ℂfld Σg ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ↾ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) = (ℂfld Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))))
337 elfznn0 13358 . . . . . . . . . . . 12 (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) → 𝑘 ∈ ℕ0)
338337, 246sylan2 593 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) ∈ ℂ)
339333, 338gsumfsum 20674 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) = Σ𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘)))
340324, 336, 3393eqtr3a 2803 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) = Σ𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘)))
341340mpteq2dva 5175 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑧 ∈ ℂ ↦ (ℂfld Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘))))
342241, 320, 3413eqtrd 2783 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸𝑎) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘))))
34312adantr 481 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝑆 ⊆ ℂ)
344 elplyr 25371 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0 ∧ (coe1𝑎):ℕ0𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆))
345343, 297, 179, 344syl3anc 1370 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆))
346342, 345eqeltrd 2840 . . . . . 6 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸𝑎) ∈ (Poly‘𝑆))
347 eleq1 2827 . . . . . 6 ((𝐸𝑎) = 𝑓 → ((𝐸𝑎) ∈ (Poly‘𝑆) ↔ 𝑓 ∈ (Poly‘𝑆)))
348346, 347syl5ibcom 244 . . . . 5 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝐸𝑎) = 𝑓𝑓 ∈ (Poly‘𝑆)))
349348rexlimdva 3214 . . . 4 (𝑆 ∈ (SubRing‘ℂfld) → (∃𝑎𝐴 (𝐸𝑎) = 𝑓𝑓 ∈ (Poly‘𝑆)))
350151, 349syl5 34 . . 3 (𝑆 ∈ (SubRing‘ℂfld) → (𝑓 ∈ (𝐸𝐴) → 𝑓 ∈ (Poly‘𝑆)))
351147, 350impbid 211 . 2 (𝑆 ∈ (SubRing‘ℂfld) → (𝑓 ∈ (Poly‘𝑆) ↔ 𝑓 ∈ (𝐸𝐴)))
352351eqrdv 2737 1 (𝑆 ∈ (SubRing‘ℂfld) → (Poly‘𝑆) = (𝐸𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2107  wne 2944  wrex 3066  Vcvv 3433  cdif 3885  cun 3886  wss 3888  ifcif 4460  {csn 4562   class class class wbr 5075  cmpt 5158   × cxp 5588  cres 5592  cima 5593  ccom 5594  Fun wfun 6431   Fn wfn 6432  wf 6433  cfv 6437  (class class class)co 7284  f cof 7540   supp csupp 7986  m cmap 8624  Fincfn 8742   finSupp cfsupp 9137  cc 10878  0cc0 10880   · cmul 10885  -∞cmnf 11016  *cxr 11017   < clt 11018  cle 11019  0cn0 12242  ...cfz 13248  cexp 13791  Σcsu 15406  Basecbs 16921  s cress 16950  .rcmulr 16972  Scalarcsca 16974   ·𝑠 cvsca 16975  0gc0g 17159   Σg cgsu 17160  s cpws 17166  Mndcmnd 18394   MndHom cmhm 18437  SubMndcsubmnd 18438  .gcmg 18709  SubGrpcsubg 18758   GrpHom cghm 18840  CMndccmn 19395  mulGrpcmgp 19729  Ringcrg 19792  CRingccrg 19793   RingHom crh 19965  SubRingcsubrg 20029  LModclmod 20132  fldccnfld 20606  algSccascl 21068  var1cv1 21356  Poly1cpl1 21357  coe1cco1 21358  eval1ce1 21489   deg1 cdg1 25225  Polycply 25354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-inf2 9408  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958  ax-addf 10959  ax-mulf 10960
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-ofr 7543  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-sup 9210  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-rp 12740  df-fz 13249  df-fzo 13392  df-seq 13731  df-exp 13792  df-hash 14054  df-cj 14819  df-re 14820  df-im 14821  df-sqrt 14955  df-abs 14956  df-clim 15206  df-sum 15407  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-starv 16986  df-sca 16987  df-vsca 16988  df-ip 16989  df-tset 16990  df-ple 16991  df-ds 16993  df-unif 16994  df-hom 16995  df-cco 16996  df-0g 17161  df-gsum 17162  df-prds 17167  df-pws 17169  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-mhm 18439  df-submnd 18440  df-grp 18589  df-minusg 18590  df-sbg 18591  df-mulg 18710  df-subg 18761  df-ghm 18841  df-cntz 18932  df-cmn 19397  df-abl 19398  df-mgp 19730  df-ur 19747  df-srg 19751  df-ring 19794  df-cring 19795  df-rnghom 19968  df-subrg 20031  df-lmod 20134  df-lss 20203  df-lsp 20243  df-cnfld 20607  df-assa 21069  df-asp 21070  df-ascl 21071  df-psr 21121  df-mvr 21122  df-mpl 21123  df-opsr 21125  df-evls 21291  df-evl 21292  df-psr1 21360  df-vr1 21361  df-ply1 21362  df-coe1 21363  df-evl1 21491  df-mdeg 25226  df-deg1 25227  df-ply 25358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator