MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plypf1 Structured version   Visualization version   GIF version

Theorem plypf1 25278
Description: Write the set of complex polynomials in a subring in terms of the abstract polynomial construction. (Contributed by Mario Carneiro, 3-Jul-2015.) (Proof shortened by AV, 29-Sep-2019.)
Hypotheses
Ref Expression
plypf1.r 𝑅 = (ℂflds 𝑆)
plypf1.p 𝑃 = (Poly1𝑅)
plypf1.a 𝐴 = (Base‘𝑃)
plypf1.e 𝐸 = (eval1‘ℂfld)
Assertion
Ref Expression
plypf1 (𝑆 ∈ (SubRing‘ℂfld) → (Poly‘𝑆) = (𝐸𝐴))

Proof of Theorem plypf1
Dummy variables 𝑓 𝑎 𝑘 𝑛 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 25261 . . . . 5 (𝑓 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
21simprbi 496 . . . 4 (𝑓 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
3 eqid 2738 . . . . . . . . 9 (ℂflds ℂ) = (ℂflds ℂ)
4 cnfldbas 20514 . . . . . . . . 9 ℂ = (Base‘ℂfld)
5 eqid 2738 . . . . . . . . 9 (0g‘(ℂflds ℂ)) = (0g‘(ℂflds ℂ))
6 cnex 10883 . . . . . . . . . 10 ℂ ∈ V
76a1i 11 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → ℂ ∈ V)
8 fzfid 13621 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (0...𝑛) ∈ Fin)
9 cnring 20532 . . . . . . . . . 10 fld ∈ Ring
10 ringcmn 19735 . . . . . . . . . 10 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
119, 10mp1i 13 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → ℂfld ∈ CMnd)
124subrgss 19940 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
1312ad2antrr 722 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑆 ⊆ ℂ)
14 elmapi 8595 . . . . . . . . . . . . . . 15 (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
1514ad2antll 725 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
16 subrgsubg 19945 . . . . . . . . . . . . . . . . . . 19 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld))
17 cnfld0 20534 . . . . . . . . . . . . . . . . . . . 20 0 = (0g‘ℂfld)
1817subg0cl 18678 . . . . . . . . . . . . . . . . . . 19 (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆)
1916, 18syl 17 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ (SubRing‘ℂfld) → 0 ∈ 𝑆)
2019adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → 0 ∈ 𝑆)
2120snssd 4739 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → {0} ⊆ 𝑆)
22 ssequn2 4113 . . . . . . . . . . . . . . . 16 ({0} ⊆ 𝑆 ↔ (𝑆 ∪ {0}) = 𝑆)
2321, 22sylib 217 . . . . . . . . . . . . . . 15 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑆 ∪ {0}) = 𝑆)
2423feq3d 6571 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑎:ℕ0⟶(𝑆 ∪ {0}) ↔ 𝑎:ℕ0𝑆))
2515, 24mpbid 231 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → 𝑎:ℕ0𝑆)
26 elfznn0 13278 . . . . . . . . . . . . 13 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
27 ffvelrn 6941 . . . . . . . . . . . . 13 ((𝑎:ℕ0𝑆𝑘 ∈ ℕ0) → (𝑎𝑘) ∈ 𝑆)
2825, 26, 27syl2an 595 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ 𝑆)
2913, 28sseldd 3918 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℂ)
3029adantrl 712 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → (𝑎𝑘) ∈ ℂ)
31 simprl 767 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → 𝑧 ∈ ℂ)
3226ad2antll 725 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → 𝑘 ∈ ℕ0)
33 expcl 13728 . . . . . . . . . . 11 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
3431, 32, 33syl2anc 583 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → (𝑧𝑘) ∈ ℂ)
3530, 34mulcld 10926 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ (0...𝑛))) → ((𝑎𝑘) · (𝑧𝑘)) ∈ ℂ)
36 eqid 2738 . . . . . . . . . 10 (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))
376mptex 7081 . . . . . . . . . . 11 (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))) ∈ V
3837a1i 11 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))) ∈ V)
39 fvex 6769 . . . . . . . . . . 11 (0g‘(ℂflds ℂ)) ∈ V
4039a1i 11 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (0g‘(ℂflds ℂ)) ∈ V)
4136, 8, 38, 40fsuppmptdm 9069 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘)))) finSupp (0g‘(ℂflds ℂ)))
423, 4, 5, 7, 8, 11, 35, 41pwsgsum 19498 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → ((ℂflds ℂ) Σg (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ (ℂfld Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑎𝑘) · (𝑧𝑘))))))
43 fzfid 13621 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → (0...𝑛) ∈ Fin)
4435anassrs 467 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · (𝑧𝑘)) ∈ ℂ)
4543, 44gsumfsum 20577 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑎𝑘) · (𝑧𝑘)))) = Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))
4645mpteq2dva 5170 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑧 ∈ ℂ ↦ (ℂfld Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑎𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
4742, 46eqtrd 2778 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → ((ℂflds ℂ) Σg (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
483pwsring 19769 . . . . . . . . . 10 ((ℂfld ∈ Ring ∧ ℂ ∈ V) → (ℂflds ℂ) ∈ Ring)
499, 6, 48mp2an 688 . . . . . . . . 9 (ℂflds ℂ) ∈ Ring
50 ringcmn 19735 . . . . . . . . 9 ((ℂflds ℂ) ∈ Ring → (ℂflds ℂ) ∈ CMnd)
5149, 50mp1i 13 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (ℂflds ℂ) ∈ CMnd)
52 cncrng 20531 . . . . . . . . . . 11 fld ∈ CRing
53 plypf1.e . . . . . . . . . . . 12 𝐸 = (eval1‘ℂfld)
54 eqid 2738 . . . . . . . . . . . 12 (Poly1‘ℂfld) = (Poly1‘ℂfld)
5553, 54, 3, 4evl1rhm 21408 . . . . . . . . . . 11 (ℂfld ∈ CRing → 𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ)))
5652, 55ax-mp 5 . . . . . . . . . 10 𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ))
57 plypf1.r . . . . . . . . . . . 12 𝑅 = (ℂflds 𝑆)
58 plypf1.p . . . . . . . . . . . 12 𝑃 = (Poly1𝑅)
59 plypf1.a . . . . . . . . . . . 12 𝐴 = (Base‘𝑃)
6054, 57, 58, 59subrgply1 21314 . . . . . . . . . . 11 (𝑆 ∈ (SubRing‘ℂfld) → 𝐴 ∈ (SubRing‘(Poly1‘ℂfld)))
6160adantr 480 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → 𝐴 ∈ (SubRing‘(Poly1‘ℂfld)))
62 rhmima 19970 . . . . . . . . . 10 ((𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ)) ∧ 𝐴 ∈ (SubRing‘(Poly1‘ℂfld))) → (𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)))
6356, 61, 62sylancr 586 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)))
64 subrgsubg 19945 . . . . . . . . 9 ((𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)) → (𝐸𝐴) ∈ (SubGrp‘(ℂflds ℂ)))
65 subgsubm 18692 . . . . . . . . 9 ((𝐸𝐴) ∈ (SubGrp‘(ℂflds ℂ)) → (𝐸𝐴) ∈ (SubMnd‘(ℂflds ℂ)))
6663, 64, 653syl 18 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝐸𝐴) ∈ (SubMnd‘(ℂflds ℂ)))
67 eqid 2738 . . . . . . . . . . . 12 (Base‘(ℂflds ℂ)) = (Base‘(ℂflds ℂ))
689a1i 11 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ℂfld ∈ Ring)
696a1i 11 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ℂ ∈ V)
70 fconst6g 6647 . . . . . . . . . . . . . 14 ((𝑎𝑘) ∈ ℂ → (ℂ × {(𝑎𝑘)}):ℂ⟶ℂ)
7129, 70syl 17 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎𝑘)}):ℂ⟶ℂ)
723, 4, 67pwselbasb 17116 . . . . . . . . . . . . . 14 ((ℂfld ∈ Ring ∧ ℂ ∈ V) → ((ℂ × {(𝑎𝑘)}) ∈ (Base‘(ℂflds ℂ)) ↔ (ℂ × {(𝑎𝑘)}):ℂ⟶ℂ))
739, 6, 72mp2an 688 . . . . . . . . . . . . 13 ((ℂ × {(𝑎𝑘)}) ∈ (Base‘(ℂflds ℂ)) ↔ (ℂ × {(𝑎𝑘)}):ℂ⟶ℂ)
7471, 73sylibr 233 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎𝑘)}) ∈ (Base‘(ℂflds ℂ)))
7534anass1rs 651 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → (𝑧𝑘) ∈ ℂ)
7675fmpttd 6971 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧𝑘)):ℂ⟶ℂ)
773, 4, 67pwselbasb 17116 . . . . . . . . . . . . . 14 ((ℂfld ∈ Ring ∧ ℂ ∈ V) → ((𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (Base‘(ℂflds ℂ)) ↔ (𝑧 ∈ ℂ ↦ (𝑧𝑘)):ℂ⟶ℂ))
789, 6, 77mp2an 688 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (Base‘(ℂflds ℂ)) ↔ (𝑧 ∈ ℂ ↦ (𝑧𝑘)):ℂ⟶ℂ)
7976, 78sylibr 233 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (Base‘(ℂflds ℂ)))
80 cnfldmul 20516 . . . . . . . . . . . 12 · = (.r‘ℂfld)
81 eqid 2738 . . . . . . . . . . . 12 (.r‘(ℂflds ℂ)) = (.r‘(ℂflds ℂ))
823, 67, 68, 69, 74, 79, 80, 81pwsmulrval 17119 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎𝑘)})(.r‘(ℂflds ℂ))(𝑧 ∈ ℂ ↦ (𝑧𝑘))) = ((ℂ × {(𝑎𝑘)}) ∘f · (𝑧 ∈ ℂ ↦ (𝑧𝑘))))
8329adantr 480 . . . . . . . . . . . 12 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → (𝑎𝑘) ∈ ℂ)
84 fconstmpt 5640 . . . . . . . . . . . . 13 (ℂ × {(𝑎𝑘)}) = (𝑧 ∈ ℂ ↦ (𝑎𝑘))
8584a1i 11 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎𝑘)}) = (𝑧 ∈ ℂ ↦ (𝑎𝑘)))
86 eqidd 2739 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧𝑘)) = (𝑧 ∈ ℂ ↦ (𝑧𝑘)))
8769, 83, 75, 85, 86offval2 7531 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎𝑘)}) ∘f · (𝑧 ∈ ℂ ↦ (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))
8882, 87eqtrd 2778 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎𝑘)})(.r‘(ℂflds ℂ))(𝑧 ∈ ℂ ↦ (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))
8963adantr 480 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)))
90 eqid 2738 . . . . . . . . . . . . . 14 (algSc‘(Poly1‘ℂfld)) = (algSc‘(Poly1‘ℂfld))
9153, 54, 4, 90evl1sca 21410 . . . . . . . . . . . . 13 ((ℂfld ∈ CRing ∧ (𝑎𝑘) ∈ ℂ) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘))) = (ℂ × {(𝑎𝑘)}))
9252, 29, 91sylancr 586 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘))) = (ℂ × {(𝑎𝑘)}))
93 eqid 2738 . . . . . . . . . . . . . . . 16 (Base‘(Poly1‘ℂfld)) = (Base‘(Poly1‘ℂfld))
9493, 67rhmf 19885 . . . . . . . . . . . . . . 15 (𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ)) → 𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ)))
9556, 94ax-mp 5 . . . . . . . . . . . . . 14 𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ))
96 ffn 6584 . . . . . . . . . . . . . 14 (𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ)) → 𝐸 Fn (Base‘(Poly1‘ℂfld)))
9795, 96mp1i 13 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐸 Fn (Base‘(Poly1‘ℂfld)))
9893subrgss 19940 . . . . . . . . . . . . . . 15 (𝐴 ∈ (SubRing‘(Poly1‘ℂfld)) → 𝐴 ⊆ (Base‘(Poly1‘ℂfld)))
9960, 98syl 17 . . . . . . . . . . . . . 14 (𝑆 ∈ (SubRing‘ℂfld) → 𝐴 ⊆ (Base‘(Poly1‘ℂfld)))
10099ad2antrr 722 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ⊆ (Base‘(Poly1‘ℂfld)))
101 simpll 763 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑆 ∈ (SubRing‘ℂfld))
10254, 90, 57, 58, 101, 59, 4, 29subrg1asclcl 21341 . . . . . . . . . . . . . 14 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘)) ∈ 𝐴 ↔ (𝑎𝑘) ∈ 𝑆))
10328, 102mpbird 256 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘)) ∈ 𝐴)
104 fnfvima 7091 . . . . . . . . . . . . 13 ((𝐸 Fn (Base‘(Poly1‘ℂfld)) ∧ 𝐴 ⊆ (Base‘(Poly1‘ℂfld)) ∧ ((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘)) ∈ 𝐴) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘))) ∈ (𝐸𝐴))
10597, 100, 103, 104syl3anc 1369 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘((algSc‘(Poly1‘ℂfld))‘(𝑎𝑘))) ∈ (𝐸𝐴))
10692, 105eqeltrrd 2840 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (ℂ × {(𝑎𝑘)}) ∈ (𝐸𝐴))
10767subrgss 19940 . . . . . . . . . . . . . . . . 17 ((𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)) → (𝐸𝐴) ⊆ (Base‘(ℂflds ℂ)))
10889, 107syl 17 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸𝐴) ⊆ (Base‘(ℂflds ℂ)))
10960ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ (SubRing‘(Poly1‘ℂfld)))
110 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (mulGrp‘(Poly1‘ℂfld)) = (mulGrp‘(Poly1‘ℂfld))
111110subrgsubm 19952 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ (SubRing‘(Poly1‘ℂfld)) → 𝐴 ∈ (SubMnd‘(mulGrp‘(Poly1‘ℂfld))))
112109, 111syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝐴 ∈ (SubMnd‘(mulGrp‘(Poly1‘ℂfld))))
11326adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0)
114 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (var1‘ℂfld) = (var1‘ℂfld)
115114, 101, 57, 58, 59subrgvr1cl 21343 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (var1‘ℂfld) ∈ 𝐴)
116 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (.g‘(mulGrp‘(Poly1‘ℂfld))) = (.g‘(mulGrp‘(Poly1‘ℂfld)))
117116submmulgcl 18661 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ (SubMnd‘(mulGrp‘(Poly1‘ℂfld))) ∧ 𝑘 ∈ ℕ0 ∧ (var1‘ℂfld) ∈ 𝐴) → (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ 𝐴)
118112, 113, 115, 117syl3anc 1369 . . . . . . . . . . . . . . . . 17 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ 𝐴)
119 fnfvima 7091 . . . . . . . . . . . . . . . . 17 ((𝐸 Fn (Base‘(Poly1‘ℂfld)) ∧ 𝐴 ⊆ (Base‘(Poly1‘ℂfld)) ∧ (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ 𝐴) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (𝐸𝐴))
12097, 100, 118, 119syl3anc 1369 . . . . . . . . . . . . . . . 16 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (𝐸𝐴))
121108, 120sseldd 3918 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(ℂflds ℂ)))
1223, 4, 67, 68, 69, 121pwselbas 17117 . . . . . . . . . . . . . 14 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))):ℂ⟶ℂ)
123122feqmptd 6819 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) = (𝑧 ∈ ℂ ↦ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧)))
12452a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ℂfld ∈ CRing)
125 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
12653, 114, 4, 54, 93, 124, 125evl1vard 21413 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ((var1‘ℂfld) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(var1‘ℂfld))‘𝑧) = 𝑧))
127 eqid 2738 . . . . . . . . . . . . . . . . 17 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
128113adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℕ0)
12953, 54, 4, 93, 124, 125, 126, 116, 127, 128evl1expd 21421 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧)))
130129simprd 495 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧))
131 cnfldexp 20543 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘ℂfld))𝑧) = (𝑧𝑘))
132125, 128, 131syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → (𝑘(.g‘(mulGrp‘ℂfld))𝑧) = (𝑧𝑘))
133130, 132eqtrd 2778 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) ∧ 𝑧 ∈ ℂ) → ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧𝑘))
134133mpteq2dva 5170 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧)) = (𝑧 ∈ ℂ ↦ (𝑧𝑘)))
135123, 134eqtrd 2778 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) = (𝑧 ∈ ℂ ↦ (𝑧𝑘)))
136135, 120eqeltrrd 2840 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (𝐸𝐴))
13781subrgmcl 19951 . . . . . . . . . . 11 (((𝐸𝐴) ∈ (SubRing‘(ℂflds ℂ)) ∧ (ℂ × {(𝑎𝑘)}) ∈ (𝐸𝐴) ∧ (𝑧 ∈ ℂ ↦ (𝑧𝑘)) ∈ (𝐸𝐴)) → ((ℂ × {(𝑎𝑘)})(.r‘(ℂflds ℂ))(𝑧 ∈ ℂ ↦ (𝑧𝑘))) ∈ (𝐸𝐴))
13889, 106, 136, 137syl3anc 1369 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → ((ℂ × {(𝑎𝑘)})(.r‘(ℂflds ℂ))(𝑧 ∈ ℂ ↦ (𝑧𝑘))) ∈ (𝐸𝐴))
13988, 138eqeltrrd 2840 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))) ∈ (𝐸𝐴))
140139fmpttd 6971 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘)))):(0...𝑛)⟶(𝐸𝐴))
14136, 8, 139, 40fsuppmptdm 9069 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘)))) finSupp (0g‘(ℂflds ℂ)))
1425, 51, 8, 66, 140, 141gsumsubmcl 19435 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → ((ℂflds ℂ) Σg (𝑘 ∈ (0...𝑛) ↦ (𝑧 ∈ ℂ ↦ ((𝑎𝑘) · (𝑧𝑘))))) ∈ (𝐸𝐴))
14347, 142eqeltrrd 2840 . . . . . 6 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ∈ (𝐸𝐴))
144 eleq1 2826 . . . . . 6 (𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → (𝑓 ∈ (𝐸𝐴) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) ∈ (𝐸𝐴)))
145143, 144syl5ibrcom 246 . . . . 5 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝑓 ∈ (𝐸𝐴)))
146145rexlimdvva 3222 . . . 4 (𝑆 ∈ (SubRing‘ℂfld) → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝑓 ∈ (𝐸𝐴)))
1472, 146syl5 34 . . 3 (𝑆 ∈ (SubRing‘ℂfld) → (𝑓 ∈ (Poly‘𝑆) → 𝑓 ∈ (𝐸𝐴)))
148 ffun 6587 . . . . . 6 (𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ)) → Fun 𝐸)
14995, 148ax-mp 5 . . . . 5 Fun 𝐸
150 fvelima 6817 . . . . 5 ((Fun 𝐸𝑓 ∈ (𝐸𝐴)) → ∃𝑎𝐴 (𝐸𝑎) = 𝑓)
151149, 150mpan 686 . . . 4 (𝑓 ∈ (𝐸𝐴) → ∃𝑎𝐴 (𝐸𝑎) = 𝑓)
15299sselda 3917 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝑎 ∈ (Base‘(Poly1‘ℂfld)))
153 eqid 2738 . . . . . . . . . . . 12 ( ·𝑠 ‘(Poly1‘ℂfld)) = ( ·𝑠 ‘(Poly1‘ℂfld))
154 eqid 2738 . . . . . . . . . . . 12 (coe1𝑎) = (coe1𝑎)
15554, 114, 93, 153, 110, 116, 154ply1coe 21377 . . . . . . . . . . 11 ((ℂfld ∈ Ring ∧ 𝑎 ∈ (Base‘(Poly1‘ℂfld))) → 𝑎 = ((Poly1‘ℂfld) Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))))
1569, 152, 155sylancr 586 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝑎 = ((Poly1‘ℂfld) Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))))
157156fveq2d 6760 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸𝑎) = (𝐸‘((Poly1‘ℂfld) Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))))
158 eqid 2738 . . . . . . . . . 10 (0g‘(Poly1‘ℂfld)) = (0g‘(Poly1‘ℂfld))
15954ply1ring 21329 . . . . . . . . . . . 12 (ℂfld ∈ Ring → (Poly1‘ℂfld) ∈ Ring)
1609, 159ax-mp 5 . . . . . . . . . . 11 (Poly1‘ℂfld) ∈ Ring
161 ringcmn 19735 . . . . . . . . . . 11 ((Poly1‘ℂfld) ∈ Ring → (Poly1‘ℂfld) ∈ CMnd)
162160, 161mp1i 13 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (Poly1‘ℂfld) ∈ CMnd)
163 ringmnd 19708 . . . . . . . . . . 11 ((ℂflds ℂ) ∈ Ring → (ℂflds ℂ) ∈ Mnd)
16449, 163mp1i 13 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (ℂflds ℂ) ∈ Mnd)
165 nn0ex 12169 . . . . . . . . . . 11 0 ∈ V
166165a1i 11 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ℕ0 ∈ V)
167 rhmghm 19884 . . . . . . . . . . . 12 (𝐸 ∈ ((Poly1‘ℂfld) RingHom (ℂflds ℂ)) → 𝐸 ∈ ((Poly1‘ℂfld) GrpHom (ℂflds ℂ)))
16856, 167ax-mp 5 . . . . . . . . . . 11 𝐸 ∈ ((Poly1‘ℂfld) GrpHom (ℂflds ℂ))
169 ghmmhm 18759 . . . . . . . . . . 11 (𝐸 ∈ ((Poly1‘ℂfld) GrpHom (ℂflds ℂ)) → 𝐸 ∈ ((Poly1‘ℂfld) MndHom (ℂflds ℂ)))
170168, 169mp1i 13 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝐸 ∈ ((Poly1‘ℂfld) MndHom (ℂflds ℂ)))
17154ply1lmod 21333 . . . . . . . . . . . . 13 (ℂfld ∈ Ring → (Poly1‘ℂfld) ∈ LMod)
1729, 171mp1i 13 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (Poly1‘ℂfld) ∈ LMod)
17312ad2antrr 722 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → 𝑆 ⊆ ℂ)
174 eqid 2738 . . . . . . . . . . . . . . . . 17 (Base‘𝑅) = (Base‘𝑅)
175154, 59, 58, 174coe1f 21292 . . . . . . . . . . . . . . . 16 (𝑎𝐴 → (coe1𝑎):ℕ0⟶(Base‘𝑅))
17657subrgbas 19948 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 = (Base‘𝑅))
177176feq3d 6571 . . . . . . . . . . . . . . . 16 (𝑆 ∈ (SubRing‘ℂfld) → ((coe1𝑎):ℕ0𝑆 ↔ (coe1𝑎):ℕ0⟶(Base‘𝑅)))
178175, 177syl5ibr 245 . . . . . . . . . . . . . . 15 (𝑆 ∈ (SubRing‘ℂfld) → (𝑎𝐴 → (coe1𝑎):ℕ0𝑆))
179178imp 406 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (coe1𝑎):ℕ0𝑆)
180179ffvelrnda 6943 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑎)‘𝑘) ∈ 𝑆)
181173, 180sseldd 3918 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑎)‘𝑘) ∈ ℂ)
182110ringmgp 19704 . . . . . . . . . . . . . 14 ((Poly1‘ℂfld) ∈ Ring → (mulGrp‘(Poly1‘ℂfld)) ∈ Mnd)
183160, 182mp1i 13 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘(Poly1‘ℂfld)) ∈ Mnd)
184 simpr 484 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
185114, 54, 93vr1cl 21298 . . . . . . . . . . . . . 14 (ℂfld ∈ Ring → (var1‘ℂfld) ∈ (Base‘(Poly1‘ℂfld)))
1869, 185mp1i 13 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (var1‘ℂfld) ∈ (Base‘(Poly1‘ℂfld)))
187110, 93mgpbas 19641 . . . . . . . . . . . . . 14 (Base‘(Poly1‘ℂfld)) = (Base‘(mulGrp‘(Poly1‘ℂfld)))
188187, 116mulgnn0cl 18635 . . . . . . . . . . . . 13 (((mulGrp‘(Poly1‘ℂfld)) ∈ Mnd ∧ 𝑘 ∈ ℕ0 ∧ (var1‘ℂfld) ∈ (Base‘(Poly1‘ℂfld))) → (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)))
189183, 184, 186, 188syl3anc 1369 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)))
19054ply1sca 21334 . . . . . . . . . . . . . 14 (ℂfld ∈ Ring → ℂfld = (Scalar‘(Poly1‘ℂfld)))
1919, 190ax-mp 5 . . . . . . . . . . . . 13 fld = (Scalar‘(Poly1‘ℂfld))
19293, 191, 153, 4lmodvscl 20055 . . . . . . . . . . . 12 (((Poly1‘ℂfld) ∈ LMod ∧ ((coe1𝑎)‘𝑘) ∈ ℂ ∧ (𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld))) → (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(Poly1‘ℂfld)))
193172, 181, 189, 192syl3anc 1369 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(Poly1‘ℂfld)))
194193fmpttd 6971 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))):ℕ0⟶(Base‘(Poly1‘ℂfld)))
195165mptex 7081 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ V
196 funmpt 6456 . . . . . . . . . . . . 13 Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))
197 fvex 6769 . . . . . . . . . . . . 13 (0g‘(Poly1‘ℂfld)) ∈ V
198195, 196, 1973pm3.2i 1337 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∧ (0g‘(Poly1‘ℂfld)) ∈ V)
199198a1i 11 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∧ (0g‘(Poly1‘ℂfld)) ∈ V))
200154, 93, 54, 17coe1sfi 21294 . . . . . . . . . . . . 13 (𝑎 ∈ (Base‘(Poly1‘ℂfld)) → (coe1𝑎) finSupp 0)
201152, 200syl 17 . . . . . . . . . . . 12 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (coe1𝑎) finSupp 0)
202201fsuppimpd 9065 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((coe1𝑎) supp 0) ∈ Fin)
203179feqmptd 6819 . . . . . . . . . . . . . 14 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (coe1𝑎) = (𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)))
204203oveq1d 7270 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((coe1𝑎) supp 0) = ((𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)) supp 0))
205 eqimss2 3974 . . . . . . . . . . . . 13 (((coe1𝑎) supp 0) = ((𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)) supp 0) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)) supp 0) ⊆ ((coe1𝑎) supp 0))
206204, 205syl 17 . . . . . . . . . . . 12 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ ((coe1𝑎)‘𝑘)) supp 0) ⊆ ((coe1𝑎) supp 0))
2079, 171mp1i 13 . . . . . . . . . . . . 13 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (Poly1‘ℂfld) ∈ LMod)
20893, 191, 153, 17, 158lmod0vs 20071 . . . . . . . . . . . . 13 (((Poly1‘ℂfld) ∈ LMod ∧ 𝑥 ∈ (Base‘(Poly1‘ℂfld))) → (0( ·𝑠 ‘(Poly1‘ℂfld))𝑥) = (0g‘(Poly1‘ℂfld)))
209207, 208sylan 579 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑥 ∈ (Base‘(Poly1‘ℂfld))) → (0( ·𝑠 ‘(Poly1‘ℂfld))𝑥) = (0g‘(Poly1‘ℂfld)))
210 c0ex 10900 . . . . . . . . . . . . 13 0 ∈ V
211210a1i 11 . . . . . . . . . . . 12 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 0 ∈ V)
212206, 209, 180, 189, 211suppssov1 7985 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) supp (0g‘(Poly1‘ℂfld))) ⊆ ((coe1𝑎) supp 0))
213 suppssfifsupp 9073 . . . . . . . . . . 11 ((((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∧ (0g‘(Poly1‘ℂfld)) ∈ V) ∧ (((coe1𝑎) supp 0) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) supp (0g‘(Poly1‘ℂfld))) ⊆ ((coe1𝑎) supp 0))) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) finSupp (0g‘(Poly1‘ℂfld)))
214199, 202, 212, 213syl12anc 833 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) finSupp (0g‘(Poly1‘ℂfld)))
21593, 158, 162, 164, 166, 170, 194, 214gsummhm 19454 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((ℂflds ℂ) Σg (𝐸 ∘ (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))) = (𝐸‘((Poly1‘ℂfld) Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))))
21695a1i 11 . . . . . . . . . . . 12 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝐸:(Base‘(Poly1‘ℂfld))⟶(Base‘(ℂflds ℂ)))
217216, 193cofmpt 6986 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸 ∘ (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))) = (𝑘 ∈ ℕ0 ↦ (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))))
2189a1i 11 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → ℂfld ∈ Ring)
2196a1i 11 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → ℂ ∈ V)
22095ffvelrni 6942 . . . . . . . . . . . . . . . 16 ((((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(Poly1‘ℂfld)) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ (Base‘(ℂflds ℂ)))
221193, 220syl 17 . . . . . . . . . . . . . . 15 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) ∈ (Base‘(ℂflds ℂ)))
2223, 4, 67, 218, 219, 221pwselbas 17117 . . . . . . . . . . . . . 14 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))):ℂ⟶ℂ)
223222feqmptd 6819 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) = (𝑧 ∈ ℂ ↦ ((𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧)))
22452a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ℂfld ∈ CRing)
225 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
22653, 114, 4, 54, 93, 224, 225evl1vard 21413 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((var1‘ℂfld) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(var1‘ℂfld))‘𝑧) = 𝑧))
227184adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑘 ∈ ℕ0)
22853, 54, 4, 93, 224, 225, 226, 116, 127, 227evl1expd 21421 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧)))
229225, 227, 131syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝑘(.g‘(mulGrp‘ℂfld))𝑧) = (𝑧𝑘))
230229eqeq2d 2749 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧) ↔ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧𝑘)))
231230anbi2d 628 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑘(.g‘(mulGrp‘ℂfld))𝑧)) ↔ ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧𝑘))))
232228, 231mpbid 231 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))‘𝑧) = (𝑧𝑘)))
233181adantr 480 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((coe1𝑎)‘𝑘) ∈ ℂ)
23453, 54, 4, 93, 224, 225, 232, 233, 153, 80evl1vsd 21420 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))) ∈ (Base‘(Poly1‘ℂfld)) ∧ ((𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧) = (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
235234simprd 495 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧) = (((coe1𝑎)‘𝑘) · (𝑧𝑘)))
236235mpteq2dva 5170 . . . . . . . . . . . . 13 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ ((𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))‘𝑧)) = (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
237223, 236eqtrd 2778 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ ℕ0) → (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))) = (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
238237mpteq2dva 5170 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑘 ∈ ℕ0 ↦ (𝐸‘(((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))) = (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))))
239217, 238eqtrd 2778 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸 ∘ (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld))))) = (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))))
240239oveq2d 7271 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((ℂflds ℂ) Σg (𝐸 ∘ (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘)( ·𝑠 ‘(Poly1‘ℂfld))(𝑘(.g‘(mulGrp‘(Poly1‘ℂfld)))(var1‘ℂfld)))))) = ((ℂflds ℂ) Σg (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))))
241157, 215, 2403eqtr2d 2784 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸𝑎) = ((ℂflds ℂ) Σg (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))))
2426a1i 11 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ℂ ∈ V)
2439, 10mp1i 13 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ℂfld ∈ CMnd)
244181adantlr 711 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑎)‘𝑘) ∈ ℂ)
24533adantll 710 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
246244, 245mulcld 10926 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) ∈ ℂ)
247246anasss 466 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ (𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) ∈ ℂ)
248165mptex 7081 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∈ V
249 funmpt 6456 . . . . . . . . . . . 12 Fun (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
250248, 249, 393pm3.2i 1337 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∧ (0g‘(ℂflds ℂ)) ∈ V)
251250a1i 11 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∧ (0g‘(ℂflds ℂ)) ∈ V))
252 fzfid 13621 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ∈ Fin)
253 eldifn 4058 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))) → ¬ 𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
254253adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → ¬ 𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
255152ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → 𝑎 ∈ (Base‘(Poly1‘ℂfld)))
256 eldifi 4057 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))) → 𝑘 ∈ ℕ0)
257256adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → 𝑘 ∈ ℕ0)
258 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 ( deg1 ‘ℂfld) = ( deg1 ‘ℂfld)
259258, 54, 93, 17, 154deg1ge 25168 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎 ∈ (Base‘(Poly1‘ℂfld)) ∧ 𝑘 ∈ ℕ0 ∧ ((coe1𝑎)‘𝑘) ≠ 0) → 𝑘 ≤ (( deg1 ‘ℂfld)‘𝑎))
2602593expia 1119 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ (Base‘(Poly1‘ℂfld)) ∧ 𝑘 ∈ ℕ0) → (((coe1𝑎)‘𝑘) ≠ 0 → 𝑘 ≤ (( deg1 ‘ℂfld)‘𝑎)))
261255, 257, 260syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) ≠ 0 → 𝑘 ≤ (( deg1 ‘ℂfld)‘𝑎)))
262 0xr 10953 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ ℝ*
263258, 54, 93deg1xrcl 25152 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 ∈ (Base‘(Poly1‘ℂfld)) → (( deg1 ‘ℂfld)‘𝑎) ∈ ℝ*)
264152, 263syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (( deg1 ‘ℂfld)‘𝑎) ∈ ℝ*)
265264ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (( deg1 ‘ℂfld)‘𝑎) ∈ ℝ*)
266 xrmax2 12839 . . . . . . . . . . . . . . . . . . . . . . 23 ((0 ∈ ℝ* ∧ (( deg1 ‘ℂfld)‘𝑎) ∈ ℝ*) → (( deg1 ‘ℂfld)‘𝑎) ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))
267262, 265, 266sylancr 586 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (( deg1 ‘ℂfld)‘𝑎) ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))
268257nn0red 12224 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → 𝑘 ∈ ℝ)
269268rexrd 10956 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → 𝑘 ∈ ℝ*)
270 ifcl 4501 . . . . . . . . . . . . . . . . . . . . . . . 24 (((( deg1 ‘ℂfld)‘𝑎) ∈ ℝ* ∧ 0 ∈ ℝ*) → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℝ*)
271265, 262, 270sylancl 585 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℝ*)
272 xrletr 12821 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ* ∧ (( deg1 ‘ℂfld)‘𝑎) ∈ ℝ* ∧ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℝ*) → ((𝑘 ≤ (( deg1 ‘ℂfld)‘𝑎) ∧ (( deg1 ‘ℂfld)‘𝑎) ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) → 𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
273269, 265, 271, 272syl3anc 1369 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → ((𝑘 ≤ (( deg1 ‘ℂfld)‘𝑎) ∧ (( deg1 ‘ℂfld)‘𝑎) ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) → 𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
274267, 273mpan2d 690 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑘 ≤ (( deg1 ‘ℂfld)‘𝑎) → 𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
275261, 274syld 47 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) ≠ 0 → 𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
276275, 257jctild 525 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) ≠ 0 → (𝑘 ∈ ℕ0𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))))
277258, 54, 93deg1cl 25153 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 ∈ (Base‘(Poly1‘ℂfld)) → (( deg1 ‘ℂfld)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
278152, 277syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (( deg1 ‘ℂfld)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
279 elun 4079 . . . . . . . . . . . . . . . . . . . . . . 23 ((( deg1 ‘ℂfld)‘𝑎) ∈ (ℕ0 ∪ {-∞}) ↔ ((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 ∨ (( deg1 ‘ℂfld)‘𝑎) ∈ {-∞}))
280278, 279sylib 217 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 ∨ (( deg1 ‘ℂfld)‘𝑎) ∈ {-∞}))
281 nn0ge0 12188 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 → 0 ≤ (( deg1 ‘ℂfld)‘𝑎))
282281iftrued 4464 . . . . . . . . . . . . . . . . . . . . . . . 24 ((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) = (( deg1 ‘ℂfld)‘𝑎))
283 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 ((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 → (( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0)
284282, 283eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . 23 ((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0)
285 mnflt0 12790 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 -∞ < 0
286 mnfxr 10963 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 -∞ ∈ ℝ*
287 xrltnle 10973 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞))
288286, 262, 287mp2an 688 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (-∞ < 0 ↔ ¬ 0 ≤ -∞)
289285, 288mpbi 229 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ¬ 0 ≤ -∞
290 elsni 4575 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((( deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → (( deg1 ‘ℂfld)‘𝑎) = -∞)
291290breq2d 5082 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((( deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → (0 ≤ (( deg1 ‘ℂfld)‘𝑎) ↔ 0 ≤ -∞))
292289, 291mtbiri 326 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → ¬ 0 ≤ (( deg1 ‘ℂfld)‘𝑎))
293292iffalsed 4467 . . . . . . . . . . . . . . . . . . . . . . . 24 ((( deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) = 0)
294 0nn0 12178 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ ℕ0
295293, 294eqeltrdi 2847 . . . . . . . . . . . . . . . . . . . . . . 23 ((( deg1 ‘ℂfld)‘𝑎) ∈ {-∞} → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0)
296284, 295jaoi 853 . . . . . . . . . . . . . . . . . . . . . 22 (((( deg1 ‘ℂfld)‘𝑎) ∈ ℕ0 ∨ (( deg1 ‘ℂfld)‘𝑎) ∈ {-∞}) → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0)
297280, 296syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0)
298297ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0)
299 fznn0 13277 . . . . . . . . . . . . . . . . . . . 20 (if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0 → (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ↔ (𝑘 ∈ ℕ0𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))))
300298, 299syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ↔ (𝑘 ∈ ℕ0𝑘 ≤ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))))
301276, 300sylibrd 258 . . . . . . . . . . . . . . . . . 18 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) ≠ 0 → 𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))))
302301necon1bd 2960 . . . . . . . . . . . . . . . . 17 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (¬ 𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) → ((coe1𝑎)‘𝑘) = 0))
303254, 302mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → ((coe1𝑎)‘𝑘) = 0)
304303oveq1d 7270 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) = (0 · (𝑧𝑘)))
305256, 245sylan2 592 . . . . . . . . . . . . . . . 16 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑧𝑘) ∈ ℂ)
306305mul02d 11103 . . . . . . . . . . . . . . 15 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (0 · (𝑧𝑘)) = 0)
307304, 306eqtrd 2778 . . . . . . . . . . . . . 14 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) = 0)
308307an32s 648 . . . . . . . . . . . . 13 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) ∧ 𝑧 ∈ ℂ) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) = 0)
309308mpteq2dva 5170 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ 0))
310 fconstmpt 5640 . . . . . . . . . . . . 13 (ℂ × {0}) = (𝑧 ∈ ℂ ↦ 0)
311 ringmnd 19708 . . . . . . . . . . . . . . 15 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
3129, 311ax-mp 5 . . . . . . . . . . . . . 14 fld ∈ Mnd
3133, 17pws0g 18336 . . . . . . . . . . . . . 14 ((ℂfld ∈ Mnd ∧ ℂ ∈ V) → (ℂ × {0}) = (0g‘(ℂflds ℂ)))
314312, 6, 313mp2an 688 . . . . . . . . . . . . 13 (ℂ × {0}) = (0g‘(ℂflds ℂ))
315310, 314eqtr3i 2768 . . . . . . . . . . . 12 (𝑧 ∈ ℂ ↦ 0) = (0g‘(ℂflds ℂ))
316309, 315eqtrdi 2795 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑘 ∈ (ℕ0 ∖ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) = (0g‘(ℂflds ℂ)))
317316, 166suppss2 7987 . . . . . . . . . 10 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) supp (0g‘(ℂflds ℂ))) ⊆ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
318 suppssfifsupp 9073 . . . . . . . . . 10 ((((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) ∧ (0g‘(ℂflds ℂ)) ∈ V) ∧ ((0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) supp (0g‘(ℂflds ℂ))) ⊆ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) finSupp (0g‘(ℂflds ℂ)))
319251, 252, 317, 318syl12anc 833 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) finSupp (0g‘(ℂflds ℂ)))
3203, 4, 5, 242, 166, 243, 247, 319pwsgsum 19498 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((ℂflds ℂ) Σg (𝑘 ∈ ℕ0 ↦ (𝑧 ∈ ℂ ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ (ℂfld Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))))
321 fz0ssnn0 13280 . . . . . . . . . . . 12 (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ⊆ ℕ0
322 resmpt 5934 . . . . . . . . . . . 12 ((0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ⊆ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ↾ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))) = (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
323321, 322ax-mp 5 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ↾ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))) = (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))
324323oveq2i 7266 . . . . . . . . . 10 (ℂfld Σg ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ↾ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) = (ℂfld Σg (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))
3259, 10mp1i 13 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → ℂfld ∈ CMnd)
326165a1i 11 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → ℕ0 ∈ V)
327246fmpttd 6971 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))):ℕ0⟶ℂ)
328307, 326suppss2 7987 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) supp 0) ⊆ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))
329165mptex 7081 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ V
330 funmpt 6456 . . . . . . . . . . . . . 14 Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))
331329, 330, 2103pm3.2i 1337 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∧ 0 ∈ V)
332331a1i 11 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∧ 0 ∈ V))
333 fzfid 13621 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ∈ Fin)
334 suppssfifsupp 9073 . . . . . . . . . . . 12 ((((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ V ∧ Fun (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∧ 0 ∈ V) ∧ ((0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ∈ Fin ∧ ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) supp 0) ⊆ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) finSupp 0)
335332, 333, 328, 334syl12anc 833 . . . . . . . . . . 11 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) finSupp 0)
3364, 17, 325, 326, 327, 328, 335gsumres 19429 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (ℂfld Σg ((𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))) ↾ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)))) = (ℂfld Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))))
337 elfznn0 13278 . . . . . . . . . . . 12 (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) → 𝑘 ∈ ℕ0)
338337, 246sylan2 592 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))) → (((coe1𝑎)‘𝑘) · (𝑧𝑘)) ∈ ℂ)
339333, 338gsumfsum 20577 . . . . . . . . . 10 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0)) ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) = Σ𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘)))
340324, 336, 3393eqtr3a 2803 . . . . . . . . 9 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) ∧ 𝑧 ∈ ℂ) → (ℂfld Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘)))) = Σ𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘)))
341340mpteq2dva 5170 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑧 ∈ ℂ ↦ (ℂfld Σg (𝑘 ∈ ℕ0 ↦ (((coe1𝑎)‘𝑘) · (𝑧𝑘))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘))))
342241, 320, 3413eqtrd 2782 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸𝑎) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘))))
34312adantr 480 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → 𝑆 ⊆ ℂ)
344 elplyr 25267 . . . . . . . 8 ((𝑆 ⊆ ℂ ∧ if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0) ∈ ℕ0 ∧ (coe1𝑎):ℕ0𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆))
345343, 297, 179, 344syl3anc 1369 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(0 ≤ (( deg1 ‘ℂfld)‘𝑎), (( deg1 ‘ℂfld)‘𝑎), 0))(((coe1𝑎)‘𝑘) · (𝑧𝑘))) ∈ (Poly‘𝑆))
346342, 345eqeltrd 2839 . . . . . 6 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → (𝐸𝑎) ∈ (Poly‘𝑆))
347 eleq1 2826 . . . . . 6 ((𝐸𝑎) = 𝑓 → ((𝐸𝑎) ∈ (Poly‘𝑆) ↔ 𝑓 ∈ (Poly‘𝑆)))
348346, 347syl5ibcom 244 . . . . 5 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝑎𝐴) → ((𝐸𝑎) = 𝑓𝑓 ∈ (Poly‘𝑆)))
349348rexlimdva 3212 . . . 4 (𝑆 ∈ (SubRing‘ℂfld) → (∃𝑎𝐴 (𝐸𝑎) = 𝑓𝑓 ∈ (Poly‘𝑆)))
350151, 349syl5 34 . . 3 (𝑆 ∈ (SubRing‘ℂfld) → (𝑓 ∈ (𝐸𝐴) → 𝑓 ∈ (Poly‘𝑆)))
351147, 350impbid 211 . 2 (𝑆 ∈ (SubRing‘ℂfld) → (𝑓 ∈ (Poly‘𝑆) ↔ 𝑓 ∈ (𝐸𝐴)))
352351eqrdv 2736 1 (𝑆 ∈ (SubRing‘ℂfld) → (Poly‘𝑆) = (𝐸𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  wss 3883  ifcif 4456  {csn 4558   class class class wbr 5070  cmpt 5153   × cxp 5578  cres 5582  cima 5583  ccom 5584  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509   supp csupp 7948  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  cc 10800  0cc0 10802   · cmul 10807  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  0cn0 12163  ...cfz 13168  cexp 13710  Σcsu 15325  Basecbs 16840  s cress 16867  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068  s cpws 17074  Mndcmnd 18300   MndHom cmhm 18343  SubMndcsubmnd 18344  .gcmg 18615  SubGrpcsubg 18664   GrpHom cghm 18746  CMndccmn 19301  mulGrpcmgp 19635  Ringcrg 19698  CRingccrg 19699   RingHom crh 19871  SubRingcsubrg 19935  LModclmod 20038  fldccnfld 20510  algSccascl 20969  var1cv1 21257  Poly1cpl1 21258  coe1cco1 21259  eval1ce1 21390   deg1 cdg1 25121  Polycply 25250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-srg 19657  df-ring 19700  df-cring 19701  df-rnghom 19874  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-cnfld 20511  df-assa 20970  df-asp 20971  df-ascl 20972  df-psr 21022  df-mvr 21023  df-mpl 21024  df-opsr 21026  df-evls 21192  df-evl 21193  df-psr1 21261  df-vr1 21262  df-ply1 21263  df-coe1 21264  df-evl1 21392  df-mdeg 25122  df-deg1 25123  df-ply 25254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator