| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climfsum | Structured version Visualization version GIF version | ||
| Description: Limit of a finite sum of converging sequences. Note that 𝐹(𝑘) is a collection of functions with implicit parameter 𝑘, each of which converges to 𝐵(𝑘) as 𝑛 ⇝ +∞. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Mario Carneiro, 22-May-2016.) |
| Ref | Expression |
|---|---|
| climfsum.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climfsum.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climfsum.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| climfsum.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐹 ⇝ 𝐵) |
| climfsum.6 | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
| climfsum.7 | ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑛 ∈ 𝑍)) → (𝐹‘𝑛) ∈ ℂ) |
| climfsum.8 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) |
| Ref | Expression |
|---|---|
| climfsum | ⊢ (𝜑 → 𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climfsum.8 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) | |
| 2 | 1 | mpteq2dva 5179 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) = (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛))) |
| 3 | climfsum.1 | . . . . . . . 8 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | uzssz 12748 | . . . . . . . 8 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
| 5 | 3, 4 | eqsstri 3976 | . . . . . . 7 ⊢ 𝑍 ⊆ ℤ |
| 6 | zssre 12470 | . . . . . . 7 ⊢ ℤ ⊆ ℝ | |
| 7 | 5, 6 | sstri 3939 | . . . . . 6 ⊢ 𝑍 ⊆ ℝ |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑍 ⊆ ℝ) |
| 9 | climfsum.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 10 | fvexd 6832 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝐴)) → (𝐹‘𝑛) ∈ V) | |
| 11 | climfsum.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐹 ⇝ 𝐵) | |
| 12 | climfsum.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 13 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ∈ ℤ) |
| 14 | climrel 15394 | . . . . . . . . . 10 ⊢ Rel ⇝ | |
| 15 | 14 | brrelex1i 5667 | . . . . . . . . 9 ⊢ (𝐹 ⇝ 𝐵 → 𝐹 ∈ V) |
| 16 | 11, 15 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐹 ∈ V) |
| 17 | eqid 2731 | . . . . . . . . 9 ⊢ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) = (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) | |
| 18 | 3, 17 | climmpt 15473 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ V) → (𝐹 ⇝ 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵)) |
| 19 | 13, 16, 18 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹 ⇝ 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵)) |
| 20 | 11, 19 | mpbid 232 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵) |
| 21 | climfsum.7 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑛 ∈ 𝑍)) → (𝐹‘𝑛) ∈ ℂ) | |
| 22 | 21 | anassrs 467 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℂ) |
| 23 | 22 | fmpttd 7043 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)):𝑍⟶ℂ) |
| 24 | 3, 13, 23 | rlimclim 15448 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵)) |
| 25 | 20, 24 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐵) |
| 26 | 8, 9, 10, 25 | fsumrlim 15713 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝𝑟 Σ𝑘 ∈ 𝐴 𝐵) |
| 27 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐴 ∈ Fin) |
| 28 | 21 | anass1rs 655 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑛) ∈ ℂ) |
| 29 | 27, 28 | fsumcl 15635 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → Σ𝑘 ∈ 𝐴 (𝐹‘𝑛) ∈ ℂ) |
| 30 | 29 | fmpttd 7043 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)):𝑍⟶ℂ) |
| 31 | 3, 12, 30 | rlimclim 15448 | . . . 4 ⊢ (𝜑 → ((𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝𝑟 Σ𝑘 ∈ 𝐴 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵)) |
| 32 | 26, 31 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
| 33 | 2, 32 | eqbrtrd 5108 | . 2 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
| 34 | climfsum.6 | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
| 35 | eqid 2731 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) = (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) | |
| 36 | 3, 35 | climmpt 15473 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐻 ∈ 𝑊) → (𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵)) |
| 37 | 12, 34, 36 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵)) |
| 38 | 33, 37 | mpbird 257 | 1 ⊢ (𝜑 → 𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 class class class wbr 5086 ↦ cmpt 5167 ‘cfv 6476 Fincfn 8864 ℂcc 10999 ℝcr 11000 ℤcz 12463 ℤ≥cuz 12727 ⇝ cli 15386 ⇝𝑟 crli 15387 Σcsu 15588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-fl 13691 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-rlim 15391 df-sum 15589 |
| This theorem is referenced by: itg1climres 25637 plyeq0lem 26137 |
| Copyright terms: Public domain | W3C validator |