![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climfsum | Structured version Visualization version GIF version |
Description: Limit of a finite sum of converging sequences. Note that 𝐹(𝑘) is a collection of functions with implicit parameter 𝑘, each of which converges to 𝐵(𝑘) as 𝑛 ⇝ +∞. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Mario Carneiro, 22-May-2016.) |
Ref | Expression |
---|---|
climfsum.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climfsum.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climfsum.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
climfsum.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐹 ⇝ 𝐵) |
climfsum.6 | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
climfsum.7 | ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑛 ∈ 𝑍)) → (𝐹‘𝑛) ∈ ℂ) |
climfsum.8 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) |
Ref | Expression |
---|---|
climfsum | ⊢ (𝜑 → 𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climfsum.8 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) | |
2 | 1 | mpteq2dva 5247 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) = (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛))) |
3 | climfsum.1 | . . . . . . . 8 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | uzssz 12896 | . . . . . . . 8 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
5 | 3, 4 | eqsstri 4029 | . . . . . . 7 ⊢ 𝑍 ⊆ ℤ |
6 | zssre 12617 | . . . . . . 7 ⊢ ℤ ⊆ ℝ | |
7 | 5, 6 | sstri 4004 | . . . . . 6 ⊢ 𝑍 ⊆ ℝ |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑍 ⊆ ℝ) |
9 | climfsum.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
10 | fvexd 6921 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝐴)) → (𝐹‘𝑛) ∈ V) | |
11 | climfsum.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐹 ⇝ 𝐵) | |
12 | climfsum.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
13 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ∈ ℤ) |
14 | climrel 15524 | . . . . . . . . . 10 ⊢ Rel ⇝ | |
15 | 14 | brrelex1i 5744 | . . . . . . . . 9 ⊢ (𝐹 ⇝ 𝐵 → 𝐹 ∈ V) |
16 | 11, 15 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐹 ∈ V) |
17 | eqid 2734 | . . . . . . . . 9 ⊢ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) = (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) | |
18 | 3, 17 | climmpt 15603 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ V) → (𝐹 ⇝ 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵)) |
19 | 13, 16, 18 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹 ⇝ 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵)) |
20 | 11, 19 | mpbid 232 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵) |
21 | climfsum.7 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑛 ∈ 𝑍)) → (𝐹‘𝑛) ∈ ℂ) | |
22 | 21 | anassrs 467 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℂ) |
23 | 22 | fmpttd 7134 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)):𝑍⟶ℂ) |
24 | 3, 13, 23 | rlimclim 15578 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵)) |
25 | 20, 24 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐵) |
26 | 8, 9, 10, 25 | fsumrlim 15843 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝𝑟 Σ𝑘 ∈ 𝐴 𝐵) |
27 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐴 ∈ Fin) |
28 | 21 | anass1rs 655 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑛) ∈ ℂ) |
29 | 27, 28 | fsumcl 15765 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → Σ𝑘 ∈ 𝐴 (𝐹‘𝑛) ∈ ℂ) |
30 | 29 | fmpttd 7134 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)):𝑍⟶ℂ) |
31 | 3, 12, 30 | rlimclim 15578 | . . . 4 ⊢ (𝜑 → ((𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝𝑟 Σ𝑘 ∈ 𝐴 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵)) |
32 | 26, 31 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
33 | 2, 32 | eqbrtrd 5169 | . 2 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
34 | climfsum.6 | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
35 | eqid 2734 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) = (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) | |
36 | 3, 35 | climmpt 15603 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐻 ∈ 𝑊) → (𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵)) |
37 | 12, 34, 36 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵)) |
38 | 33, 37 | mpbird 257 | 1 ⊢ (𝜑 → 𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ⊆ wss 3962 class class class wbr 5147 ↦ cmpt 5230 ‘cfv 6562 Fincfn 8983 ℂcc 11150 ℝcr 11151 ℤcz 12610 ℤ≥cuz 12875 ⇝ cli 15516 ⇝𝑟 crli 15517 Σcsu 15718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-pm 8867 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-z 12611 df-uz 12876 df-rp 13032 df-fz 13544 df-fzo 13691 df-fl 13828 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-clim 15520 df-rlim 15521 df-sum 15719 |
This theorem is referenced by: itg1climres 25763 plyeq0lem 26263 |
Copyright terms: Public domain | W3C validator |