Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > climfsum | Structured version Visualization version GIF version |
Description: Limit of a finite sum of converging sequences. Note that 𝐹(𝑘) is a collection of functions with implicit parameter 𝑘, each of which converges to 𝐵(𝑘) as 𝑛 ⇝ +∞. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Mario Carneiro, 22-May-2016.) |
Ref | Expression |
---|---|
climfsum.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climfsum.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climfsum.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
climfsum.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐹 ⇝ 𝐵) |
climfsum.6 | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
climfsum.7 | ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑛 ∈ 𝑍)) → (𝐹‘𝑛) ∈ ℂ) |
climfsum.8 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) |
Ref | Expression |
---|---|
climfsum | ⊢ (𝜑 → 𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climfsum.8 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) | |
2 | 1 | mpteq2dva 5127 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) = (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛))) |
3 | climfsum.1 | . . . . . . . 8 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | uzssz 12303 | . . . . . . . 8 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
5 | 3, 4 | eqsstri 3926 | . . . . . . 7 ⊢ 𝑍 ⊆ ℤ |
6 | zssre 12027 | . . . . . . 7 ⊢ ℤ ⊆ ℝ | |
7 | 5, 6 | sstri 3901 | . . . . . 6 ⊢ 𝑍 ⊆ ℝ |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑍 ⊆ ℝ) |
9 | climfsum.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
10 | fvexd 6673 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝐴)) → (𝐹‘𝑛) ∈ V) | |
11 | climfsum.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐹 ⇝ 𝐵) | |
12 | climfsum.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
13 | 12 | adantr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ∈ ℤ) |
14 | climrel 14897 | . . . . . . . . . 10 ⊢ Rel ⇝ | |
15 | 14 | brrelex1i 5577 | . . . . . . . . 9 ⊢ (𝐹 ⇝ 𝐵 → 𝐹 ∈ V) |
16 | 11, 15 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐹 ∈ V) |
17 | eqid 2758 | . . . . . . . . 9 ⊢ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) = (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) | |
18 | 3, 17 | climmpt 14976 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ V) → (𝐹 ⇝ 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵)) |
19 | 13, 16, 18 | syl2anc 587 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹 ⇝ 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵)) |
20 | 11, 19 | mpbid 235 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵) |
21 | climfsum.7 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑛 ∈ 𝑍)) → (𝐹‘𝑛) ∈ ℂ) | |
22 | 21 | anassrs 471 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℂ) |
23 | 22 | fmpttd 6870 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)):𝑍⟶ℂ) |
24 | 3, 13, 23 | rlimclim 14951 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵)) |
25 | 20, 24 | mpbird 260 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐵) |
26 | 8, 9, 10, 25 | fsumrlim 15214 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝𝑟 Σ𝑘 ∈ 𝐴 𝐵) |
27 | 9 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐴 ∈ Fin) |
28 | 21 | anass1rs 654 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑛) ∈ ℂ) |
29 | 27, 28 | fsumcl 15138 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → Σ𝑘 ∈ 𝐴 (𝐹‘𝑛) ∈ ℂ) |
30 | 29 | fmpttd 6870 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)):𝑍⟶ℂ) |
31 | 3, 12, 30 | rlimclim 14951 | . . . 4 ⊢ (𝜑 → ((𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝𝑟 Σ𝑘 ∈ 𝐴 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵)) |
32 | 26, 31 | mpbid 235 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
33 | 2, 32 | eqbrtrd 5054 | . 2 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
34 | climfsum.6 | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
35 | eqid 2758 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) = (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) | |
36 | 3, 35 | climmpt 14976 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐻 ∈ 𝑊) → (𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵)) |
37 | 12, 34, 36 | syl2anc 587 | . 2 ⊢ (𝜑 → (𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵)) |
38 | 33, 37 | mpbird 260 | 1 ⊢ (𝜑 → 𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ⊆ wss 3858 class class class wbr 5032 ↦ cmpt 5112 ‘cfv 6335 Fincfn 8527 ℂcc 10573 ℝcr 10574 ℤcz 12020 ℤ≥cuz 12282 ⇝ cli 14889 ⇝𝑟 crli 14890 Σcsu 15090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 ax-addf 10654 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-pm 8419 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-sup 8939 df-inf 8940 df-oi 9007 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-z 12021 df-uz 12283 df-rp 12431 df-fz 12940 df-fzo 13083 df-fl 13211 df-seq 13419 df-exp 13480 df-hash 13741 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-clim 14893 df-rlim 14894 df-sum 15091 |
This theorem is referenced by: itg1climres 24414 plyeq0lem 24906 |
Copyright terms: Public domain | W3C validator |