![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climfsum | Structured version Visualization version GIF version |
Description: Limit of a finite sum of converging sequences. Note that 𝐹(𝑘) is a collection of functions with implicit parameter 𝑘, each of which converges to 𝐵(𝑘) as 𝑛 ⇝ +∞. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Mario Carneiro, 22-May-2016.) |
Ref | Expression |
---|---|
climfsum.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climfsum.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climfsum.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
climfsum.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐹 ⇝ 𝐵) |
climfsum.6 | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
climfsum.7 | ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑛 ∈ 𝑍)) → (𝐹‘𝑛) ∈ ℂ) |
climfsum.8 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) |
Ref | Expression |
---|---|
climfsum | ⊢ (𝜑 → 𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climfsum.8 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) | |
2 | 1 | mpteq2dva 5266 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) = (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛))) |
3 | climfsum.1 | . . . . . . . 8 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | uzssz 12924 | . . . . . . . 8 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
5 | 3, 4 | eqsstri 4043 | . . . . . . 7 ⊢ 𝑍 ⊆ ℤ |
6 | zssre 12646 | . . . . . . 7 ⊢ ℤ ⊆ ℝ | |
7 | 5, 6 | sstri 4018 | . . . . . 6 ⊢ 𝑍 ⊆ ℝ |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑍 ⊆ ℝ) |
9 | climfsum.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
10 | fvexd 6935 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝐴)) → (𝐹‘𝑛) ∈ V) | |
11 | climfsum.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐹 ⇝ 𝐵) | |
12 | climfsum.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
13 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ∈ ℤ) |
14 | climrel 15538 | . . . . . . . . . 10 ⊢ Rel ⇝ | |
15 | 14 | brrelex1i 5756 | . . . . . . . . 9 ⊢ (𝐹 ⇝ 𝐵 → 𝐹 ∈ V) |
16 | 11, 15 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐹 ∈ V) |
17 | eqid 2740 | . . . . . . . . 9 ⊢ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) = (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) | |
18 | 3, 17 | climmpt 15617 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ V) → (𝐹 ⇝ 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵)) |
19 | 13, 16, 18 | syl2anc 583 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹 ⇝ 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵)) |
20 | 11, 19 | mpbid 232 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵) |
21 | climfsum.7 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑛 ∈ 𝑍)) → (𝐹‘𝑛) ∈ ℂ) | |
22 | 21 | anassrs 467 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℂ) |
23 | 22 | fmpttd 7149 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)):𝑍⟶ℂ) |
24 | 3, 13, 23 | rlimclim 15592 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵)) |
25 | 20, 24 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐵) |
26 | 8, 9, 10, 25 | fsumrlim 15859 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝𝑟 Σ𝑘 ∈ 𝐴 𝐵) |
27 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐴 ∈ Fin) |
28 | 21 | anass1rs 654 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑛) ∈ ℂ) |
29 | 27, 28 | fsumcl 15781 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → Σ𝑘 ∈ 𝐴 (𝐹‘𝑛) ∈ ℂ) |
30 | 29 | fmpttd 7149 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)):𝑍⟶ℂ) |
31 | 3, 12, 30 | rlimclim 15592 | . . . 4 ⊢ (𝜑 → ((𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝𝑟 Σ𝑘 ∈ 𝐴 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵)) |
32 | 26, 31 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
33 | 2, 32 | eqbrtrd 5188 | . 2 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
34 | climfsum.6 | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
35 | eqid 2740 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) = (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) | |
36 | 3, 35 | climmpt 15617 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐻 ∈ 𝑊) → (𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵)) |
37 | 12, 34, 36 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵)) |
38 | 33, 37 | mpbird 257 | 1 ⊢ (𝜑 → 𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 Fincfn 9003 ℂcc 11182 ℝcr 11183 ℤcz 12639 ℤ≥cuz 12903 ⇝ cli 15530 ⇝𝑟 crli 15531 Σcsu 15734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 |
This theorem is referenced by: itg1climres 25769 plyeq0lem 26269 |
Copyright terms: Public domain | W3C validator |