Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > climfsum | Structured version Visualization version GIF version |
Description: Limit of a finite sum of converging sequences. Note that 𝐹(𝑘) is a collection of functions with implicit parameter 𝑘, each of which converges to 𝐵(𝑘) as 𝑛 ⇝ +∞. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Mario Carneiro, 22-May-2016.) |
Ref | Expression |
---|---|
climfsum.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climfsum.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climfsum.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
climfsum.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐹 ⇝ 𝐵) |
climfsum.6 | ⊢ (𝜑 → 𝐻 ∈ 𝑊) |
climfsum.7 | ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑛 ∈ 𝑍)) → (𝐹‘𝑛) ∈ ℂ) |
climfsum.8 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) |
Ref | Expression |
---|---|
climfsum | ⊢ (𝜑 → 𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climfsum.8 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐻‘𝑛) = Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) | |
2 | 1 | mpteq2dva 5174 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) = (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛))) |
3 | climfsum.1 | . . . . . . . 8 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | uzssz 12603 | . . . . . . . 8 ⊢ (ℤ≥‘𝑀) ⊆ ℤ | |
5 | 3, 4 | eqsstri 3955 | . . . . . . 7 ⊢ 𝑍 ⊆ ℤ |
6 | zssre 12326 | . . . . . . 7 ⊢ ℤ ⊆ ℝ | |
7 | 5, 6 | sstri 3930 | . . . . . 6 ⊢ 𝑍 ⊆ ℝ |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑍 ⊆ ℝ) |
9 | climfsum.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
10 | fvexd 6789 | . . . . 5 ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑘 ∈ 𝐴)) → (𝐹‘𝑛) ∈ V) | |
11 | climfsum.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐹 ⇝ 𝐵) | |
12 | climfsum.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
13 | 12 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑀 ∈ ℤ) |
14 | climrel 15201 | . . . . . . . . . 10 ⊢ Rel ⇝ | |
15 | 14 | brrelex1i 5643 | . . . . . . . . 9 ⊢ (𝐹 ⇝ 𝐵 → 𝐹 ∈ V) |
16 | 11, 15 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐹 ∈ V) |
17 | eqid 2738 | . . . . . . . . 9 ⊢ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) = (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) | |
18 | 3, 17 | climmpt 15280 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ V) → (𝐹 ⇝ 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵)) |
19 | 13, 16, 18 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹 ⇝ 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵)) |
20 | 11, 19 | mpbid 231 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵) |
21 | climfsum.7 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∧ 𝑛 ∈ 𝑍)) → (𝐹‘𝑛) ∈ ℂ) | |
22 | 21 | anassrs 468 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℂ) |
23 | 22 | fmpttd 6989 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)):𝑍⟶ℂ) |
24 | 3, 13, 23 | rlimclim 15255 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐵)) |
25 | 20, 24 | mpbird 256 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐵) |
26 | 8, 9, 10, 25 | fsumrlim 15523 | . . . 4 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝𝑟 Σ𝑘 ∈ 𝐴 𝐵) |
27 | 9 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝐴 ∈ Fin) |
28 | 21 | anass1rs 652 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑛) ∈ ℂ) |
29 | 27, 28 | fsumcl 15445 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → Σ𝑘 ∈ 𝐴 (𝐹‘𝑛) ∈ ℂ) |
30 | 29 | fmpttd 6989 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)):𝑍⟶ℂ) |
31 | 3, 12, 30 | rlimclim 15255 | . . . 4 ⊢ (𝜑 → ((𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝𝑟 Σ𝑘 ∈ 𝐴 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵)) |
32 | 26, 31 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ 𝐴 (𝐹‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
33 | 2, 32 | eqbrtrd 5096 | . 2 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
34 | climfsum.6 | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝑊) | |
35 | eqid 2738 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) = (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) | |
36 | 3, 35 | climmpt 15280 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐻 ∈ 𝑊) → (𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵)) |
37 | 12, 34, 36 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵 ↔ (𝑛 ∈ 𝑍 ↦ (𝐻‘𝑛)) ⇝ Σ𝑘 ∈ 𝐴 𝐵)) |
38 | 33, 37 | mpbird 256 | 1 ⊢ (𝜑 → 𝐻 ⇝ Σ𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 Fincfn 8733 ℂcc 10869 ℝcr 10870 ℤcz 12319 ℤ≥cuz 12582 ⇝ cli 15193 ⇝𝑟 crli 15194 Σcsu 15397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-rlim 15198 df-sum 15398 |
This theorem is referenced by: itg1climres 24879 plyeq0lem 25371 |
Copyright terms: Public domain | W3C validator |