MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climfsum Structured version   Visualization version   GIF version

Theorem climfsum 15852
Description: Limit of a finite sum of converging sequences. Note that 𝐹(𝑘) is a collection of functions with implicit parameter 𝑘, each of which converges to 𝐵(𝑘) as 𝑛 ⇝ +∞. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Mario Carneiro, 22-May-2016.)
Hypotheses
Ref Expression
climfsum.1 𝑍 = (ℤ𝑀)
climfsum.2 (𝜑𝑀 ∈ ℤ)
climfsum.3 (𝜑𝐴 ∈ Fin)
climfsum.5 ((𝜑𝑘𝐴) → 𝐹𝐵)
climfsum.6 (𝜑𝐻𝑊)
climfsum.7 ((𝜑 ∧ (𝑘𝐴𝑛𝑍)) → (𝐹𝑛) ∈ ℂ)
climfsum.8 ((𝜑𝑛𝑍) → (𝐻𝑛) = Σ𝑘𝐴 (𝐹𝑛))
Assertion
Ref Expression
climfsum (𝜑𝐻 ⇝ Σ𝑘𝐴 𝐵)
Distinct variable groups:   𝑘,𝑛,𝐴   𝑛,𝐻   𝜑,𝑘,𝑛   𝑘,𝑍,𝑛   𝐵,𝑛   𝑛,𝐹   𝑛,𝑀
Allowed substitution hints:   𝐵(𝑘)   𝐹(𝑘)   𝐻(𝑘)   𝑀(𝑘)   𝑊(𝑘,𝑛)

Proof of Theorem climfsum
StepHypRef Expression
1 climfsum.8 . . . 4 ((𝜑𝑛𝑍) → (𝐻𝑛) = Σ𝑘𝐴 (𝐹𝑛))
21mpteq2dva 5247 . . 3 (𝜑 → (𝑛𝑍 ↦ (𝐻𝑛)) = (𝑛𝑍 ↦ Σ𝑘𝐴 (𝐹𝑛)))
3 climfsum.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
4 uzssz 12896 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
53, 4eqsstri 4029 . . . . . . 7 𝑍 ⊆ ℤ
6 zssre 12617 . . . . . . 7 ℤ ⊆ ℝ
75, 6sstri 4004 . . . . . 6 𝑍 ⊆ ℝ
87a1i 11 . . . . 5 (𝜑𝑍 ⊆ ℝ)
9 climfsum.3 . . . . 5 (𝜑𝐴 ∈ Fin)
10 fvexd 6921 . . . . 5 ((𝜑 ∧ (𝑛𝑍𝑘𝐴)) → (𝐹𝑛) ∈ V)
11 climfsum.5 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐹𝐵)
12 climfsum.2 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
1312adantr 480 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝑀 ∈ ℤ)
14 climrel 15524 . . . . . . . . . 10 Rel ⇝
1514brrelex1i 5744 . . . . . . . . 9 (𝐹𝐵𝐹 ∈ V)
1611, 15syl 17 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐹 ∈ V)
17 eqid 2734 . . . . . . . . 9 (𝑛𝑍 ↦ (𝐹𝑛)) = (𝑛𝑍 ↦ (𝐹𝑛))
183, 17climmpt 15603 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ V) → (𝐹𝐵 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝ 𝐵))
1913, 16, 18syl2anc 584 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐹𝐵 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝ 𝐵))
2011, 19mpbid 232 . . . . . 6 ((𝜑𝑘𝐴) → (𝑛𝑍 ↦ (𝐹𝑛)) ⇝ 𝐵)
21 climfsum.7 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝐴𝑛𝑍)) → (𝐹𝑛) ∈ ℂ)
2221anassrs 467 . . . . . . . 8 (((𝜑𝑘𝐴) ∧ 𝑛𝑍) → (𝐹𝑛) ∈ ℂ)
2322fmpttd 7134 . . . . . . 7 ((𝜑𝑘𝐴) → (𝑛𝑍 ↦ (𝐹𝑛)):𝑍⟶ℂ)
243, 13, 23rlimclim 15578 . . . . . 6 ((𝜑𝑘𝐴) → ((𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 𝐵 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝ 𝐵))
2520, 24mpbird 257 . . . . 5 ((𝜑𝑘𝐴) → (𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 𝐵)
268, 9, 10, 25fsumrlim 15843 . . . 4 (𝜑 → (𝑛𝑍 ↦ Σ𝑘𝐴 (𝐹𝑛)) ⇝𝑟 Σ𝑘𝐴 𝐵)
279adantr 480 . . . . . . 7 ((𝜑𝑛𝑍) → 𝐴 ∈ Fin)
2821anass1rs 655 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑘𝐴) → (𝐹𝑛) ∈ ℂ)
2927, 28fsumcl 15765 . . . . . 6 ((𝜑𝑛𝑍) → Σ𝑘𝐴 (𝐹𝑛) ∈ ℂ)
3029fmpttd 7134 . . . . 5 (𝜑 → (𝑛𝑍 ↦ Σ𝑘𝐴 (𝐹𝑛)):𝑍⟶ℂ)
313, 12, 30rlimclim 15578 . . . 4 (𝜑 → ((𝑛𝑍 ↦ Σ𝑘𝐴 (𝐹𝑛)) ⇝𝑟 Σ𝑘𝐴 𝐵 ↔ (𝑛𝑍 ↦ Σ𝑘𝐴 (𝐹𝑛)) ⇝ Σ𝑘𝐴 𝐵))
3226, 31mpbid 232 . . 3 (𝜑 → (𝑛𝑍 ↦ Σ𝑘𝐴 (𝐹𝑛)) ⇝ Σ𝑘𝐴 𝐵)
332, 32eqbrtrd 5169 . 2 (𝜑 → (𝑛𝑍 ↦ (𝐻𝑛)) ⇝ Σ𝑘𝐴 𝐵)
34 climfsum.6 . . 3 (𝜑𝐻𝑊)
35 eqid 2734 . . . 4 (𝑛𝑍 ↦ (𝐻𝑛)) = (𝑛𝑍 ↦ (𝐻𝑛))
363, 35climmpt 15603 . . 3 ((𝑀 ∈ ℤ ∧ 𝐻𝑊) → (𝐻 ⇝ Σ𝑘𝐴 𝐵 ↔ (𝑛𝑍 ↦ (𝐻𝑛)) ⇝ Σ𝑘𝐴 𝐵))
3712, 34, 36syl2anc 584 . 2 (𝜑 → (𝐻 ⇝ Σ𝑘𝐴 𝐵 ↔ (𝑛𝑍 ↦ (𝐻𝑛)) ⇝ Σ𝑘𝐴 𝐵))
3833, 37mpbird 257 1 (𝜑𝐻 ⇝ Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  Vcvv 3477  wss 3962   class class class wbr 5147  cmpt 5230  cfv 6562  Fincfn 8983  cc 11150  cr 11151  cz 12610  cuz 12875  cli 15516  𝑟 crli 15517  Σcsu 15718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719
This theorem is referenced by:  itg1climres  25763  plyeq0lem  26263
  Copyright terms: Public domain W3C validator