Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3factsumint1 Structured version   Visualization version   GIF version

Theorem 3factsumint1 41720
Description: Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.)
Hypotheses
Ref Expression
3factsumint1.1 𝐴 = (𝐿[,]𝑈)
3factsumint1.2 (𝜑𝐵 ∈ Fin)
3factsumint1.3 (𝜑𝐿 ∈ ℝ)
3factsumint1.4 (𝜑𝑈 ∈ ℝ)
3factsumint1.5 ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)
3factsumint1.6 (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))
3factsumint1.7 ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)
3factsumint1.8 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)
3factsumint1.9 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))
Assertion
Ref Expression
3factsumint1 (𝜑 → ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘,𝑥   𝑥,𝐺   𝜑,𝑘,𝑥
Allowed substitution hints:   𝑈(𝑥,𝑘)   𝐹(𝑥,𝑘)   𝐺(𝑘)   𝐻(𝑥,𝑘)   𝐿(𝑥,𝑘)

Proof of Theorem 3factsumint1
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3factsumint1.1 . . . 4 𝐴 = (𝐿[,]𝑈)
2 3factsumint1.3 . . . . 5 (𝜑𝐿 ∈ ℝ)
3 3factsumint1.4 . . . . 5 (𝜑𝑈 ∈ ℝ)
4 iccmbl 25586 . . . . 5 ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐿[,]𝑈) ∈ dom vol)
52, 3, 4syl2anc 582 . . . 4 (𝜑 → (𝐿[,]𝑈) ∈ dom vol)
61, 5eqeltrid 2830 . . 3 (𝜑𝐴 ∈ dom vol)
7 3factsumint1.2 . . 3 (𝜑𝐵 ∈ Fin)
8 3factsumint1.5 . . . . 5 ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)
98adantrr 715 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐹 ∈ ℂ)
10 3factsumint1.7 . . . . . 6 ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)
1110adantrl 714 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐺 ∈ ℂ)
12 3factsumint1.8 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)
1311, 12mulcld 11284 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → (𝐺 · 𝐻) ∈ ℂ)
149, 13mulcld 11284 . . 3 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → (𝐹 · (𝐺 · 𝐻)) ∈ ℂ)
15 ovex 7457 . . . . . . 7 (𝐿[,]𝑈) ∈ V
161, 15eqeltri 2822 . . . . . 6 𝐴 ∈ V
1716a1i 11 . . . . 5 ((𝜑𝑘𝐵) → 𝐴 ∈ V)
189anass1rs 653 . . . . 5 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐹 ∈ ℂ)
1913anass1rs 653 . . . . 5 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → (𝐺 · 𝐻) ∈ ℂ)
20 eqidd 2727 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴𝐹) = (𝑥𝐴𝐹))
21 eqidd 2727 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴 ↦ (𝐺 · 𝐻)) = (𝑥𝐴 ↦ (𝐺 · 𝐻)))
2217, 18, 19, 20, 21offval2 7710 . . . 4 ((𝜑𝑘𝐵) → ((𝑥𝐴𝐹) ∘f · (𝑥𝐴 ↦ (𝐺 · 𝐻))) = (𝑥𝐴 ↦ (𝐹 · (𝐺 · 𝐻))))
23 3factsumint1.6 . . . . . . 7 (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))
24 cnmbf 25679 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ)) → (𝑥𝐴𝐹) ∈ MblFn)
256, 23, 24syl2anc 582 . . . . . 6 (𝜑 → (𝑥𝐴𝐹) ∈ MblFn)
2625adantr 479 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴𝐹) ∈ MblFn)
2712anass1rs 653 . . . . . 6 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐻 ∈ ℂ)
282adantr 479 . . . . . . 7 ((𝜑𝑘𝐵) → 𝐿 ∈ ℝ)
293adantr 479 . . . . . . 7 ((𝜑𝑘𝐵) → 𝑈 ∈ ℝ)
30 3factsumint1.9 . . . . . . . 8 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))
311oveq1i 7434 . . . . . . . . 9 (𝐴cn→ℂ) = ((𝐿[,]𝑈)–cn→ℂ)
3231eleq2i 2818 . . . . . . . 8 ((𝑥𝐴𝐻) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ))
3330, 32sylib 217 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ))
34 cnicciblnc 25863 . . . . . . 7 ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥𝐴𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → (𝑥𝐴𝐻) ∈ 𝐿1)
3528, 29, 33, 34syl3anc 1368 . . . . . 6 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ 𝐿1)
3610, 27, 35iblmulc2 25851 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴 ↦ (𝐺 · 𝐻)) ∈ 𝐿1)
3731eleq2i 2818 . . . . . . . . 9 ((𝑥𝐴𝐹) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ))
3823, 37sylib 217 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ))
39 cniccbdd 25481 . . . . . . . 8 ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥𝐴𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
402, 3, 38, 39syl3anc 1368 . . . . . . 7 (𝜑 → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
4140adantr 479 . . . . . 6 ((𝜑𝑘𝐵) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
428ralrimiva 3136 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴 𝐹 ∈ ℂ)
43 dmmptg 6253 . . . . . . . . . . 11 (∀𝑥𝐴 𝐹 ∈ ℂ → dom (𝑥𝐴𝐹) = 𝐴)
4442, 43syl 17 . . . . . . . . . 10 (𝜑 → dom (𝑥𝐴𝐹) = 𝐴)
4544, 1eqtrdi 2782 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐹) = (𝐿[,]𝑈))
4645raleqdv 3315 . . . . . . . 8 (𝜑 → (∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞 ↔ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞))
4746rexbidv 3169 . . . . . . 7 (𝜑 → (∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞 ↔ ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞))
4847adantr 479 . . . . . 6 ((𝜑𝑘𝐵) → (∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞 ↔ ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞))
4941, 48mpbird 256 . . . . 5 ((𝜑𝑘𝐵) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
50 bddmulibl 25859 . . . . 5 (((𝑥𝐴𝐹) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐺 · 𝐻)) ∈ 𝐿1 ∧ ∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞) → ((𝑥𝐴𝐹) ∘f · (𝑥𝐴 ↦ (𝐺 · 𝐻))) ∈ 𝐿1)
5126, 36, 49, 50syl3anc 1368 . . . 4 ((𝜑𝑘𝐵) → ((𝑥𝐴𝐹) ∘f · (𝑥𝐴 ↦ (𝐺 · 𝐻))) ∈ 𝐿1)
5222, 51eqeltrrd 2827 . . 3 ((𝜑𝑘𝐵) → (𝑥𝐴 ↦ (𝐹 · (𝐺 · 𝐻))) ∈ 𝐿1)
536, 7, 14, 52itgfsum 25847 . 2 (𝜑 → ((𝑥𝐴 ↦ Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻))) ∈ 𝐿1 ∧ ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥))
5453simprd 494 1 (𝜑 → ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051  wrex 3060  Vcvv 3462   class class class wbr 5153  cmpt 5236  dom cdm 5682  cfv 6554  (class class class)co 7424  f cof 7688  Fincfn 8974  cc 11156  cr 11157   · cmul 11163  cle 11299  [,]cicc 13381  abscabs 15239  Σcsu 15690  cnccncf 24887  volcvol 25483  MblFncmbf 25634  𝐿1cibl 25637  citg 25638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cc 10478  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-disj 5119  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-ofr 7691  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-omul 8501  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-fi 9454  df-sup 9485  df-inf 9486  df-oi 9553  df-dju 9944  df-card 9982  df-acn 9985  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ioo 13382  df-ioc 13383  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-fl 13812  df-mod 13890  df-seq 14022  df-exp 14082  df-hash 14348  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-limsup 15473  df-clim 15490  df-rlim 15491  df-sum 15691  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-mulg 19062  df-cntz 19311  df-cmn 19780  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-cnfld 21344  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cn 23222  df-cnp 23223  df-cmp 23382  df-tx 23557  df-hmeo 23750  df-xms 24317  df-ms 24318  df-tms 24319  df-cncf 24889  df-ovol 25484  df-vol 25485  df-mbf 25639  df-itg1 25640  df-itg2 25641  df-ibl 25642  df-itg 25643  df-0p 25690
This theorem is referenced by:  3factsumint  41724
  Copyright terms: Public domain W3C validator