Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3factsumint1 Structured version   Visualization version   GIF version

Theorem 3factsumint1 42034
Description: Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.)
Hypotheses
Ref Expression
3factsumint1.1 𝐴 = (𝐿[,]𝑈)
3factsumint1.2 (𝜑𝐵 ∈ Fin)
3factsumint1.3 (𝜑𝐿 ∈ ℝ)
3factsumint1.4 (𝜑𝑈 ∈ ℝ)
3factsumint1.5 ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)
3factsumint1.6 (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))
3factsumint1.7 ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)
3factsumint1.8 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)
3factsumint1.9 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))
Assertion
Ref Expression
3factsumint1 (𝜑 → ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘,𝑥   𝑥,𝐺   𝜑,𝑘,𝑥
Allowed substitution hints:   𝑈(𝑥,𝑘)   𝐹(𝑥,𝑘)   𝐺(𝑘)   𝐻(𝑥,𝑘)   𝐿(𝑥,𝑘)

Proof of Theorem 3factsumint1
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3factsumint1.1 . . . 4 𝐴 = (𝐿[,]𝑈)
2 3factsumint1.3 . . . . 5 (𝜑𝐿 ∈ ℝ)
3 3factsumint1.4 . . . . 5 (𝜑𝑈 ∈ ℝ)
4 iccmbl 25519 . . . . 5 ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐿[,]𝑈) ∈ dom vol)
52, 3, 4syl2anc 584 . . . 4 (𝜑 → (𝐿[,]𝑈) ∈ dom vol)
61, 5eqeltrid 2838 . . 3 (𝜑𝐴 ∈ dom vol)
7 3factsumint1.2 . . 3 (𝜑𝐵 ∈ Fin)
8 3factsumint1.5 . . . . 5 ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)
98adantrr 717 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐹 ∈ ℂ)
10 3factsumint1.7 . . . . . 6 ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)
1110adantrl 716 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐺 ∈ ℂ)
12 3factsumint1.8 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)
1311, 12mulcld 11255 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → (𝐺 · 𝐻) ∈ ℂ)
149, 13mulcld 11255 . . 3 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → (𝐹 · (𝐺 · 𝐻)) ∈ ℂ)
15 ovex 7438 . . . . . . 7 (𝐿[,]𝑈) ∈ V
161, 15eqeltri 2830 . . . . . 6 𝐴 ∈ V
1716a1i 11 . . . . 5 ((𝜑𝑘𝐵) → 𝐴 ∈ V)
189anass1rs 655 . . . . 5 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐹 ∈ ℂ)
1913anass1rs 655 . . . . 5 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → (𝐺 · 𝐻) ∈ ℂ)
20 eqidd 2736 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴𝐹) = (𝑥𝐴𝐹))
21 eqidd 2736 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴 ↦ (𝐺 · 𝐻)) = (𝑥𝐴 ↦ (𝐺 · 𝐻)))
2217, 18, 19, 20, 21offval2 7691 . . . 4 ((𝜑𝑘𝐵) → ((𝑥𝐴𝐹) ∘f · (𝑥𝐴 ↦ (𝐺 · 𝐻))) = (𝑥𝐴 ↦ (𝐹 · (𝐺 · 𝐻))))
23 3factsumint1.6 . . . . . . 7 (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))
24 cnmbf 25612 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ)) → (𝑥𝐴𝐹) ∈ MblFn)
256, 23, 24syl2anc 584 . . . . . 6 (𝜑 → (𝑥𝐴𝐹) ∈ MblFn)
2625adantr 480 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴𝐹) ∈ MblFn)
2712anass1rs 655 . . . . . 6 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐻 ∈ ℂ)
282adantr 480 . . . . . . 7 ((𝜑𝑘𝐵) → 𝐿 ∈ ℝ)
293adantr 480 . . . . . . 7 ((𝜑𝑘𝐵) → 𝑈 ∈ ℝ)
30 3factsumint1.9 . . . . . . . 8 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))
311oveq1i 7415 . . . . . . . . 9 (𝐴cn→ℂ) = ((𝐿[,]𝑈)–cn→ℂ)
3231eleq2i 2826 . . . . . . . 8 ((𝑥𝐴𝐻) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ))
3330, 32sylib 218 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ))
34 cnicciblnc 25796 . . . . . . 7 ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥𝐴𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → (𝑥𝐴𝐻) ∈ 𝐿1)
3528, 29, 33, 34syl3anc 1373 . . . . . 6 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ 𝐿1)
3610, 27, 35iblmulc2 25784 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴 ↦ (𝐺 · 𝐻)) ∈ 𝐿1)
3731eleq2i 2826 . . . . . . . . 9 ((𝑥𝐴𝐹) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ))
3823, 37sylib 218 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ))
39 cniccbdd 25414 . . . . . . . 8 ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥𝐴𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
402, 3, 38, 39syl3anc 1373 . . . . . . 7 (𝜑 → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
4140adantr 480 . . . . . 6 ((𝜑𝑘𝐵) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
428ralrimiva 3132 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴 𝐹 ∈ ℂ)
43 dmmptg 6231 . . . . . . . . . . 11 (∀𝑥𝐴 𝐹 ∈ ℂ → dom (𝑥𝐴𝐹) = 𝐴)
4442, 43syl 17 . . . . . . . . . 10 (𝜑 → dom (𝑥𝐴𝐹) = 𝐴)
4544, 1eqtrdi 2786 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐹) = (𝐿[,]𝑈))
4645raleqdv 3305 . . . . . . . 8 (𝜑 → (∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞 ↔ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞))
4746rexbidv 3164 . . . . . . 7 (𝜑 → (∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞 ↔ ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞))
4847adantr 480 . . . . . 6 ((𝜑𝑘𝐵) → (∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞 ↔ ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞))
4941, 48mpbird 257 . . . . 5 ((𝜑𝑘𝐵) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
50 bddmulibl 25792 . . . . 5 (((𝑥𝐴𝐹) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐺 · 𝐻)) ∈ 𝐿1 ∧ ∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞) → ((𝑥𝐴𝐹) ∘f · (𝑥𝐴 ↦ (𝐺 · 𝐻))) ∈ 𝐿1)
5126, 36, 49, 50syl3anc 1373 . . . 4 ((𝜑𝑘𝐵) → ((𝑥𝐴𝐹) ∘f · (𝑥𝐴 ↦ (𝐺 · 𝐻))) ∈ 𝐿1)
5222, 51eqeltrrd 2835 . . 3 ((𝜑𝑘𝐵) → (𝑥𝐴 ↦ (𝐹 · (𝐺 · 𝐻))) ∈ 𝐿1)
536, 7, 14, 52itgfsum 25780 . 2 (𝜑 → ((𝑥𝐴 ↦ Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻))) ∈ 𝐿1 ∧ ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥))
5453simprd 495 1 (𝜑 → ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459   class class class wbr 5119  cmpt 5201  dom cdm 5654  cfv 6531  (class class class)co 7405  f cof 7669  Fincfn 8959  cc 11127  cr 11128   · cmul 11134  cle 11270  [,]cicc 13365  abscabs 15253  Σcsu 15702  cnccncf 24820  volcvol 25416  MblFncmbf 25567  𝐿1cibl 25570  citg 25571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cc 10449  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-disj 5087  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cn 23165  df-cnp 23166  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-ovol 25417  df-vol 25418  df-mbf 25572  df-itg1 25573  df-itg2 25574  df-ibl 25575  df-itg 25576  df-0p 25623
This theorem is referenced by:  3factsumint  42038
  Copyright terms: Public domain W3C validator