| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 3factsumint1 | Structured version Visualization version GIF version | ||
| Description: Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.) |
| Ref | Expression |
|---|---|
| 3factsumint1.1 | ⊢ 𝐴 = (𝐿[,]𝑈) |
| 3factsumint1.2 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| 3factsumint1.3 | ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 3factsumint1.4 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
| 3factsumint1.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) |
| 3factsumint1.6 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) |
| 3factsumint1.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐺 ∈ ℂ) |
| 3factsumint1.8 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐻 ∈ ℂ) |
| 3factsumint1.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cn→ℂ)) |
| Ref | Expression |
|---|---|
| 3factsumint1 | ⊢ (𝜑 → ∫𝐴Σ𝑘 ∈ 𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3factsumint1.1 | . . . 4 ⊢ 𝐴 = (𝐿[,]𝑈) | |
| 2 | 3factsumint1.3 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) | |
| 3 | 3factsumint1.4 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
| 4 | iccmbl 25519 | . . . . 5 ⊢ ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐿[,]𝑈) ∈ dom vol) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐿[,]𝑈) ∈ dom vol) |
| 6 | 1, 5 | eqeltrid 2838 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom vol) |
| 7 | 3factsumint1.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 8 | 3factsumint1.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) | |
| 9 | 8 | adantrr 717 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐹 ∈ ℂ) |
| 10 | 3factsumint1.7 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐺 ∈ ℂ) | |
| 11 | 10 | adantrl 716 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐺 ∈ ℂ) |
| 12 | 3factsumint1.8 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐻 ∈ ℂ) | |
| 13 | 11, 12 | mulcld 11255 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → (𝐺 · 𝐻) ∈ ℂ) |
| 14 | 9, 13 | mulcld 11255 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → (𝐹 · (𝐺 · 𝐻)) ∈ ℂ) |
| 15 | ovex 7438 | . . . . . . 7 ⊢ (𝐿[,]𝑈) ∈ V | |
| 16 | 1, 15 | eqeltri 2830 | . . . . . 6 ⊢ 𝐴 ∈ V |
| 17 | 16 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐴 ∈ V) |
| 18 | 9 | anass1rs 655 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) |
| 19 | 13 | anass1rs 655 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐺 · 𝐻) ∈ ℂ) |
| 20 | eqidd 2736 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝐹)) | |
| 21 | eqidd 2736 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻)) = (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻))) | |
| 22 | 17, 18, 19, 20, 21 | offval2 7691 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝐹) ∘f · (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻))) = (𝑥 ∈ 𝐴 ↦ (𝐹 · (𝐺 · 𝐻)))) |
| 23 | 3factsumint1.6 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) | |
| 24 | cnmbf 25612 | . . . . . . 7 ⊢ ((𝐴 ∈ dom vol ∧ (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ MblFn) | |
| 25 | 6, 23, 24 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ MblFn) |
| 26 | 25 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ MblFn) |
| 27 | 12 | anass1rs 655 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐻 ∈ ℂ) |
| 28 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐿 ∈ ℝ) |
| 29 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝑈 ∈ ℝ) |
| 30 | 3factsumint1.9 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cn→ℂ)) | |
| 31 | 1 | oveq1i 7415 | . . . . . . . . 9 ⊢ (𝐴–cn→ℂ) = ((𝐿[,]𝑈)–cn→ℂ) |
| 32 | 31 | eleq2i 2826 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cn→ℂ) ↔ (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ)) |
| 33 | 30, 32 | sylib 218 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ)) |
| 34 | cnicciblnc 25796 | . . . . . . 7 ⊢ ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ 𝐿1) | |
| 35 | 28, 29, 33, 34 | syl3anc 1373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ 𝐿1) |
| 36 | 10, 27, 35 | iblmulc2 25784 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻)) ∈ 𝐿1) |
| 37 | 31 | eleq2i 2826 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ) ↔ (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ)) |
| 38 | 23, 37 | sylib 218 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ)) |
| 39 | cniccbdd 25414 | . . . . . . . 8 ⊢ ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) | |
| 40 | 2, 3, 38, 39 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) |
| 41 | 40 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) |
| 42 | 8 | ralrimiva 3132 | . . . . . . . . . . 11 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐹 ∈ ℂ) |
| 43 | dmmptg 6231 | . . . . . . . . . . 11 ⊢ (∀𝑥 ∈ 𝐴 𝐹 ∈ ℂ → dom (𝑥 ∈ 𝐴 ↦ 𝐹) = 𝐴) | |
| 44 | 42, 43 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐹) = 𝐴) |
| 45 | 44, 1 | eqtrdi 2786 | . . . . . . . . 9 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐹) = (𝐿[,]𝑈)) |
| 46 | 45 | raleqdv 3305 | . . . . . . . 8 ⊢ (𝜑 → (∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞 ↔ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞)) |
| 47 | 46 | rexbidv 3164 | . . . . . . 7 ⊢ (𝜑 → (∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞 ↔ ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞)) |
| 48 | 47 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞 ↔ ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞)) |
| 49 | 41, 48 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) |
| 50 | bddmulibl 25792 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐹) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻)) ∈ 𝐿1 ∧ ∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) → ((𝑥 ∈ 𝐴 ↦ 𝐹) ∘f · (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻))) ∈ 𝐿1) | |
| 51 | 26, 36, 49, 50 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝐹) ∘f · (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻))) ∈ 𝐿1) |
| 52 | 22, 51 | eqeltrrd 2835 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝐹 · (𝐺 · 𝐻))) ∈ 𝐿1) |
| 53 | 6, 7, 14, 52 | itgfsum 25780 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 (𝐹 · (𝐺 · 𝐻))) ∈ 𝐿1 ∧ ∫𝐴Σ𝑘 ∈ 𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)) |
| 54 | 53 | simprd 495 | 1 ⊢ (𝜑 → ∫𝐴Σ𝑘 ∈ 𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 Vcvv 3459 class class class wbr 5119 ↦ cmpt 5201 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 ∘f cof 7669 Fincfn 8959 ℂcc 11127 ℝcr 11128 · cmul 11134 ≤ cle 11270 [,]cicc 13365 abscabs 15253 Σcsu 15702 –cn→ccncf 24820 volcvol 25416 MblFncmbf 25567 𝐿1cibl 25570 ∫citg 25571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cc 10449 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-ofr 7672 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-er 8719 df-map 8842 df-pm 8843 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-acn 9956 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ioc 13367 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-rest 17436 df-topn 17437 df-0g 17455 df-gsum 17456 df-topgen 17457 df-pt 17458 df-prds 17461 df-xrs 17516 df-qtop 17521 df-imas 17522 df-xps 17524 df-mre 17598 df-mrc 17599 df-acs 17601 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-mulg 19051 df-cntz 19300 df-cmn 19763 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-cnfld 21316 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-cn 23165 df-cnp 23166 df-cmp 23325 df-tx 23500 df-hmeo 23693 df-xms 24259 df-ms 24260 df-tms 24261 df-cncf 24822 df-ovol 25417 df-vol 25418 df-mbf 25572 df-itg1 25573 df-itg2 25574 df-ibl 25575 df-itg 25576 df-0p 25623 |
| This theorem is referenced by: 3factsumint 42038 |
| Copyright terms: Public domain | W3C validator |