Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3factsumint1 Structured version   Visualization version   GIF version

Theorem 3factsumint1 42002
Description: Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.)
Hypotheses
Ref Expression
3factsumint1.1 𝐴 = (𝐿[,]𝑈)
3factsumint1.2 (𝜑𝐵 ∈ Fin)
3factsumint1.3 (𝜑𝐿 ∈ ℝ)
3factsumint1.4 (𝜑𝑈 ∈ ℝ)
3factsumint1.5 ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)
3factsumint1.6 (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))
3factsumint1.7 ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)
3factsumint1.8 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)
3factsumint1.9 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))
Assertion
Ref Expression
3factsumint1 (𝜑 → ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘,𝑥   𝑥,𝐺   𝜑,𝑘,𝑥
Allowed substitution hints:   𝑈(𝑥,𝑘)   𝐹(𝑥,𝑘)   𝐺(𝑘)   𝐻(𝑥,𝑘)   𝐿(𝑥,𝑘)

Proof of Theorem 3factsumint1
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3factsumint1.1 . . . 4 𝐴 = (𝐿[,]𝑈)
2 3factsumint1.3 . . . . 5 (𝜑𝐿 ∈ ℝ)
3 3factsumint1.4 . . . . 5 (𝜑𝑈 ∈ ℝ)
4 iccmbl 25500 . . . . 5 ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐿[,]𝑈) ∈ dom vol)
52, 3, 4syl2anc 584 . . . 4 (𝜑 → (𝐿[,]𝑈) ∈ dom vol)
61, 5eqeltrid 2832 . . 3 (𝜑𝐴 ∈ dom vol)
7 3factsumint1.2 . . 3 (𝜑𝐵 ∈ Fin)
8 3factsumint1.5 . . . . 5 ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)
98adantrr 717 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐹 ∈ ℂ)
10 3factsumint1.7 . . . . . 6 ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)
1110adantrl 716 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐺 ∈ ℂ)
12 3factsumint1.8 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)
1311, 12mulcld 11170 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → (𝐺 · 𝐻) ∈ ℂ)
149, 13mulcld 11170 . . 3 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → (𝐹 · (𝐺 · 𝐻)) ∈ ℂ)
15 ovex 7402 . . . . . . 7 (𝐿[,]𝑈) ∈ V
161, 15eqeltri 2824 . . . . . 6 𝐴 ∈ V
1716a1i 11 . . . . 5 ((𝜑𝑘𝐵) → 𝐴 ∈ V)
189anass1rs 655 . . . . 5 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐹 ∈ ℂ)
1913anass1rs 655 . . . . 5 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → (𝐺 · 𝐻) ∈ ℂ)
20 eqidd 2730 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴𝐹) = (𝑥𝐴𝐹))
21 eqidd 2730 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴 ↦ (𝐺 · 𝐻)) = (𝑥𝐴 ↦ (𝐺 · 𝐻)))
2217, 18, 19, 20, 21offval2 7653 . . . 4 ((𝜑𝑘𝐵) → ((𝑥𝐴𝐹) ∘f · (𝑥𝐴 ↦ (𝐺 · 𝐻))) = (𝑥𝐴 ↦ (𝐹 · (𝐺 · 𝐻))))
23 3factsumint1.6 . . . . . . 7 (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))
24 cnmbf 25593 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ)) → (𝑥𝐴𝐹) ∈ MblFn)
256, 23, 24syl2anc 584 . . . . . 6 (𝜑 → (𝑥𝐴𝐹) ∈ MblFn)
2625adantr 480 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴𝐹) ∈ MblFn)
2712anass1rs 655 . . . . . 6 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐻 ∈ ℂ)
282adantr 480 . . . . . . 7 ((𝜑𝑘𝐵) → 𝐿 ∈ ℝ)
293adantr 480 . . . . . . 7 ((𝜑𝑘𝐵) → 𝑈 ∈ ℝ)
30 3factsumint1.9 . . . . . . . 8 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))
311oveq1i 7379 . . . . . . . . 9 (𝐴cn→ℂ) = ((𝐿[,]𝑈)–cn→ℂ)
3231eleq2i 2820 . . . . . . . 8 ((𝑥𝐴𝐻) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ))
3330, 32sylib 218 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ))
34 cnicciblnc 25777 . . . . . . 7 ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥𝐴𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → (𝑥𝐴𝐻) ∈ 𝐿1)
3528, 29, 33, 34syl3anc 1373 . . . . . 6 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ 𝐿1)
3610, 27, 35iblmulc2 25765 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴 ↦ (𝐺 · 𝐻)) ∈ 𝐿1)
3731eleq2i 2820 . . . . . . . . 9 ((𝑥𝐴𝐹) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ))
3823, 37sylib 218 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ))
39 cniccbdd 25395 . . . . . . . 8 ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥𝐴𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
402, 3, 38, 39syl3anc 1373 . . . . . . 7 (𝜑 → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
4140adantr 480 . . . . . 6 ((𝜑𝑘𝐵) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
428ralrimiva 3125 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴 𝐹 ∈ ℂ)
43 dmmptg 6203 . . . . . . . . . . 11 (∀𝑥𝐴 𝐹 ∈ ℂ → dom (𝑥𝐴𝐹) = 𝐴)
4442, 43syl 17 . . . . . . . . . 10 (𝜑 → dom (𝑥𝐴𝐹) = 𝐴)
4544, 1eqtrdi 2780 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐹) = (𝐿[,]𝑈))
4645raleqdv 3296 . . . . . . . 8 (𝜑 → (∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞 ↔ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞))
4746rexbidv 3157 . . . . . . 7 (𝜑 → (∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞 ↔ ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞))
4847adantr 480 . . . . . 6 ((𝜑𝑘𝐵) → (∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞 ↔ ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞))
4941, 48mpbird 257 . . . . 5 ((𝜑𝑘𝐵) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
50 bddmulibl 25773 . . . . 5 (((𝑥𝐴𝐹) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐺 · 𝐻)) ∈ 𝐿1 ∧ ∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞) → ((𝑥𝐴𝐹) ∘f · (𝑥𝐴 ↦ (𝐺 · 𝐻))) ∈ 𝐿1)
5126, 36, 49, 50syl3anc 1373 . . . 4 ((𝜑𝑘𝐵) → ((𝑥𝐴𝐹) ∘f · (𝑥𝐴 ↦ (𝐺 · 𝐻))) ∈ 𝐿1)
5222, 51eqeltrrd 2829 . . 3 ((𝜑𝑘𝐵) → (𝑥𝐴 ↦ (𝐹 · (𝐺 · 𝐻))) ∈ 𝐿1)
536, 7, 14, 52itgfsum 25761 . 2 (𝜑 → ((𝑥𝐴 ↦ Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻))) ∈ 𝐿1 ∧ ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥))
5453simprd 495 1 (𝜑 → ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3444   class class class wbr 5102  cmpt 5183  dom cdm 5631  cfv 6499  (class class class)co 7369  f cof 7631  Fincfn 8895  cc 11042  cr 11043   · cmul 11049  cle 11185  [,]cicc 13285  abscabs 15176  Σcsu 15628  cnccncf 24802  volcvol 25397  MblFncmbf 25548  𝐿1cibl 25551  citg 25552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cn 23147  df-cnp 23148  df-cmp 23307  df-tx 23482  df-hmeo 23675  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-ovol 25398  df-vol 25399  df-mbf 25553  df-itg1 25554  df-itg2 25555  df-ibl 25556  df-itg 25557  df-0p 25604
This theorem is referenced by:  3factsumint  42006
  Copyright terms: Public domain W3C validator