| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 3factsumint1 | Structured version Visualization version GIF version | ||
| Description: Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.) |
| Ref | Expression |
|---|---|
| 3factsumint1.1 | ⊢ 𝐴 = (𝐿[,]𝑈) |
| 3factsumint1.2 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| 3factsumint1.3 | ⊢ (𝜑 → 𝐿 ∈ ℝ) |
| 3factsumint1.4 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
| 3factsumint1.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) |
| 3factsumint1.6 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) |
| 3factsumint1.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐺 ∈ ℂ) |
| 3factsumint1.8 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐻 ∈ ℂ) |
| 3factsumint1.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cn→ℂ)) |
| Ref | Expression |
|---|---|
| 3factsumint1 | ⊢ (𝜑 → ∫𝐴Σ𝑘 ∈ 𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3factsumint1.1 | . . . 4 ⊢ 𝐴 = (𝐿[,]𝑈) | |
| 2 | 3factsumint1.3 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) | |
| 3 | 3factsumint1.4 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
| 4 | iccmbl 25601 | . . . . 5 ⊢ ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐿[,]𝑈) ∈ dom vol) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐿[,]𝑈) ∈ dom vol) |
| 6 | 1, 5 | eqeltrid 2845 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom vol) |
| 7 | 3factsumint1.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 8 | 3factsumint1.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) | |
| 9 | 8 | adantrr 717 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐹 ∈ ℂ) |
| 10 | 3factsumint1.7 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐺 ∈ ℂ) | |
| 11 | 10 | adantrl 716 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐺 ∈ ℂ) |
| 12 | 3factsumint1.8 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐻 ∈ ℂ) | |
| 13 | 11, 12 | mulcld 11281 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → (𝐺 · 𝐻) ∈ ℂ) |
| 14 | 9, 13 | mulcld 11281 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → (𝐹 · (𝐺 · 𝐻)) ∈ ℂ) |
| 15 | ovex 7464 | . . . . . . 7 ⊢ (𝐿[,]𝑈) ∈ V | |
| 16 | 1, 15 | eqeltri 2837 | . . . . . 6 ⊢ 𝐴 ∈ V |
| 17 | 16 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐴 ∈ V) |
| 18 | 9 | anass1rs 655 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) |
| 19 | 13 | anass1rs 655 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐺 · 𝐻) ∈ ℂ) |
| 20 | eqidd 2738 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝐹)) | |
| 21 | eqidd 2738 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻)) = (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻))) | |
| 22 | 17, 18, 19, 20, 21 | offval2 7717 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝐹) ∘f · (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻))) = (𝑥 ∈ 𝐴 ↦ (𝐹 · (𝐺 · 𝐻)))) |
| 23 | 3factsumint1.6 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) | |
| 24 | cnmbf 25694 | . . . . . . 7 ⊢ ((𝐴 ∈ dom vol ∧ (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ MblFn) | |
| 25 | 6, 23, 24 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ MblFn) |
| 26 | 25 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ MblFn) |
| 27 | 12 | anass1rs 655 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐻 ∈ ℂ) |
| 28 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐿 ∈ ℝ) |
| 29 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝑈 ∈ ℝ) |
| 30 | 3factsumint1.9 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cn→ℂ)) | |
| 31 | 1 | oveq1i 7441 | . . . . . . . . 9 ⊢ (𝐴–cn→ℂ) = ((𝐿[,]𝑈)–cn→ℂ) |
| 32 | 31 | eleq2i 2833 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cn→ℂ) ↔ (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ)) |
| 33 | 30, 32 | sylib 218 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ)) |
| 34 | cnicciblnc 25878 | . . . . . . 7 ⊢ ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ 𝐿1) | |
| 35 | 28, 29, 33, 34 | syl3anc 1373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ 𝐿1) |
| 36 | 10, 27, 35 | iblmulc2 25866 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻)) ∈ 𝐿1) |
| 37 | 31 | eleq2i 2833 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ) ↔ (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ)) |
| 38 | 23, 37 | sylib 218 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ)) |
| 39 | cniccbdd 25496 | . . . . . . . 8 ⊢ ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) | |
| 40 | 2, 3, 38, 39 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) |
| 41 | 40 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) |
| 42 | 8 | ralrimiva 3146 | . . . . . . . . . . 11 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐹 ∈ ℂ) |
| 43 | dmmptg 6262 | . . . . . . . . . . 11 ⊢ (∀𝑥 ∈ 𝐴 𝐹 ∈ ℂ → dom (𝑥 ∈ 𝐴 ↦ 𝐹) = 𝐴) | |
| 44 | 42, 43 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐹) = 𝐴) |
| 45 | 44, 1 | eqtrdi 2793 | . . . . . . . . 9 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐹) = (𝐿[,]𝑈)) |
| 46 | 45 | raleqdv 3326 | . . . . . . . 8 ⊢ (𝜑 → (∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞 ↔ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞)) |
| 47 | 46 | rexbidv 3179 | . . . . . . 7 ⊢ (𝜑 → (∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞 ↔ ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞)) |
| 48 | 47 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞 ↔ ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞)) |
| 49 | 41, 48 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) |
| 50 | bddmulibl 25874 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐹) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻)) ∈ 𝐿1 ∧ ∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) → ((𝑥 ∈ 𝐴 ↦ 𝐹) ∘f · (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻))) ∈ 𝐿1) | |
| 51 | 26, 36, 49, 50 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝐹) ∘f · (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻))) ∈ 𝐿1) |
| 52 | 22, 51 | eqeltrrd 2842 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝐹 · (𝐺 · 𝐻))) ∈ 𝐿1) |
| 53 | 6, 7, 14, 52 | itgfsum 25862 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 (𝐹 · (𝐺 · 𝐻))) ∈ 𝐿1 ∧ ∫𝐴Σ𝑘 ∈ 𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)) |
| 54 | 53 | simprd 495 | 1 ⊢ (𝜑 → ∫𝐴Σ𝑘 ∈ 𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 Vcvv 3480 class class class wbr 5143 ↦ cmpt 5225 dom cdm 5685 ‘cfv 6561 (class class class)co 7431 ∘f cof 7695 Fincfn 8985 ℂcc 11153 ℝcr 11154 · cmul 11160 ≤ cle 11296 [,]cicc 13390 abscabs 15273 Σcsu 15722 –cn→ccncf 24902 volcvol 25498 MblFncmbf 25649 𝐿1cibl 25652 ∫citg 25653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cc 10475 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-disj 5111 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-omul 8511 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-dju 9941 df-card 9979 df-acn 9982 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-ioc 13392 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-limsup 15507 df-clim 15524 df-rlim 15525 df-sum 15723 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-mulg 19086 df-cntz 19335 df-cmn 19800 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cn 23235 df-cnp 23236 df-cmp 23395 df-tx 23570 df-hmeo 23763 df-xms 24330 df-ms 24331 df-tms 24332 df-cncf 24904 df-ovol 25499 df-vol 25500 df-mbf 25654 df-itg1 25655 df-itg2 25656 df-ibl 25657 df-itg 25658 df-0p 25705 |
| This theorem is referenced by: 3factsumint 42026 |
| Copyright terms: Public domain | W3C validator |