Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3factsumint1 Structured version   Visualization version   GIF version

Theorem 3factsumint1 39957
Description: Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.)
Hypotheses
Ref Expression
3factsumint1.1 𝐴 = (𝐿[,]𝑈)
3factsumint1.2 (𝜑𝐵 ∈ Fin)
3factsumint1.3 (𝜑𝐿 ∈ ℝ)
3factsumint1.4 (𝜑𝑈 ∈ ℝ)
3factsumint1.5 ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)
3factsumint1.6 (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))
3factsumint1.7 ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)
3factsumint1.8 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)
3factsumint1.9 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))
Assertion
Ref Expression
3factsumint1 (𝜑 → ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘,𝑥   𝑥,𝐺   𝜑,𝑘,𝑥
Allowed substitution hints:   𝑈(𝑥,𝑘)   𝐹(𝑥,𝑘)   𝐺(𝑘)   𝐻(𝑥,𝑘)   𝐿(𝑥,𝑘)

Proof of Theorem 3factsumint1
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3factsumint1.1 . . . 4 𝐴 = (𝐿[,]𝑈)
2 3factsumint1.3 . . . . 5 (𝜑𝐿 ∈ ℝ)
3 3factsumint1.4 . . . . 5 (𝜑𝑈 ∈ ℝ)
4 iccmbl 24635 . . . . 5 ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐿[,]𝑈) ∈ dom vol)
52, 3, 4syl2anc 583 . . . 4 (𝜑 → (𝐿[,]𝑈) ∈ dom vol)
61, 5eqeltrid 2843 . . 3 (𝜑𝐴 ∈ dom vol)
7 3factsumint1.2 . . 3 (𝜑𝐵 ∈ Fin)
8 3factsumint1.5 . . . . 5 ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)
98adantrr 713 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐹 ∈ ℂ)
10 3factsumint1.7 . . . . . 6 ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)
1110adantrl 712 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐺 ∈ ℂ)
12 3factsumint1.8 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)
1311, 12mulcld 10926 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → (𝐺 · 𝐻) ∈ ℂ)
149, 13mulcld 10926 . . 3 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → (𝐹 · (𝐺 · 𝐻)) ∈ ℂ)
15 ovex 7288 . . . . . . 7 (𝐿[,]𝑈) ∈ V
161, 15eqeltri 2835 . . . . . 6 𝐴 ∈ V
1716a1i 11 . . . . 5 ((𝜑𝑘𝐵) → 𝐴 ∈ V)
189anass1rs 651 . . . . 5 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐹 ∈ ℂ)
1913anass1rs 651 . . . . 5 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → (𝐺 · 𝐻) ∈ ℂ)
20 eqidd 2739 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴𝐹) = (𝑥𝐴𝐹))
21 eqidd 2739 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴 ↦ (𝐺 · 𝐻)) = (𝑥𝐴 ↦ (𝐺 · 𝐻)))
2217, 18, 19, 20, 21offval2 7531 . . . 4 ((𝜑𝑘𝐵) → ((𝑥𝐴𝐹) ∘f · (𝑥𝐴 ↦ (𝐺 · 𝐻))) = (𝑥𝐴 ↦ (𝐹 · (𝐺 · 𝐻))))
23 3factsumint1.6 . . . . . . 7 (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))
24 cnmbf 24728 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ)) → (𝑥𝐴𝐹) ∈ MblFn)
256, 23, 24syl2anc 583 . . . . . 6 (𝜑 → (𝑥𝐴𝐹) ∈ MblFn)
2625adantr 480 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴𝐹) ∈ MblFn)
2712anass1rs 651 . . . . . 6 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐻 ∈ ℂ)
282adantr 480 . . . . . . 7 ((𝜑𝑘𝐵) → 𝐿 ∈ ℝ)
293adantr 480 . . . . . . 7 ((𝜑𝑘𝐵) → 𝑈 ∈ ℝ)
30 3factsumint1.9 . . . . . . . 8 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))
311oveq1i 7265 . . . . . . . . 9 (𝐴cn→ℂ) = ((𝐿[,]𝑈)–cn→ℂ)
3231eleq2i 2830 . . . . . . . 8 ((𝑥𝐴𝐻) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ))
3330, 32sylib 217 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ))
34 cnicciblnc 24912 . . . . . . 7 ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥𝐴𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → (𝑥𝐴𝐻) ∈ 𝐿1)
3528, 29, 33, 34syl3anc 1369 . . . . . 6 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ 𝐿1)
3610, 27, 35iblmulc2 24900 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴 ↦ (𝐺 · 𝐻)) ∈ 𝐿1)
3731eleq2i 2830 . . . . . . . . 9 ((𝑥𝐴𝐹) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ))
3823, 37sylib 217 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ))
39 cniccbdd 24530 . . . . . . . 8 ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥𝐴𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
402, 3, 38, 39syl3anc 1369 . . . . . . 7 (𝜑 → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
4140adantr 480 . . . . . 6 ((𝜑𝑘𝐵) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
428ralrimiva 3107 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴 𝐹 ∈ ℂ)
43 dmmptg 6134 . . . . . . . . . . 11 (∀𝑥𝐴 𝐹 ∈ ℂ → dom (𝑥𝐴𝐹) = 𝐴)
4442, 43syl 17 . . . . . . . . . 10 (𝜑 → dom (𝑥𝐴𝐹) = 𝐴)
4544, 1eqtrdi 2795 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐹) = (𝐿[,]𝑈))
4645raleqdv 3339 . . . . . . . 8 (𝜑 → (∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞 ↔ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞))
4746rexbidv 3225 . . . . . . 7 (𝜑 → (∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞 ↔ ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞))
4847adantr 480 . . . . . 6 ((𝜑𝑘𝐵) → (∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞 ↔ ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞))
4941, 48mpbird 256 . . . . 5 ((𝜑𝑘𝐵) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
50 bddmulibl 24908 . . . . 5 (((𝑥𝐴𝐹) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐺 · 𝐻)) ∈ 𝐿1 ∧ ∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞) → ((𝑥𝐴𝐹) ∘f · (𝑥𝐴 ↦ (𝐺 · 𝐻))) ∈ 𝐿1)
5126, 36, 49, 50syl3anc 1369 . . . 4 ((𝜑𝑘𝐵) → ((𝑥𝐴𝐹) ∘f · (𝑥𝐴 ↦ (𝐺 · 𝐻))) ∈ 𝐿1)
5222, 51eqeltrrd 2840 . . 3 ((𝜑𝑘𝐵) → (𝑥𝐴 ↦ (𝐹 · (𝐺 · 𝐻))) ∈ 𝐿1)
536, 7, 14, 52itgfsum 24896 . 2 (𝜑 → ((𝑥𝐴 ↦ Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻))) ∈ 𝐿1 ∧ ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥))
5453simprd 495 1 (𝜑 → ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422   class class class wbr 5070  cmpt 5153  dom cdm 5580  cfv 6418  (class class class)co 7255  f cof 7509  Fincfn 8691  cc 10800  cr 10801   · cmul 10807  cle 10941  [,]cicc 13011  abscabs 14873  Σcsu 15325  cnccncf 23945  volcvol 24532  MblFncmbf 24683  𝐿1cibl 24686  citg 24687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cn 22286  df-cnp 22287  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-itg 24692  df-0p 24739
This theorem is referenced by:  3factsumint  39961
  Copyright terms: Public domain W3C validator