Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3factsumint1 Structured version   Visualization version   GIF version

Theorem 3factsumint1 41978
Description: Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.)
Hypotheses
Ref Expression
3factsumint1.1 𝐴 = (𝐿[,]𝑈)
3factsumint1.2 (𝜑𝐵 ∈ Fin)
3factsumint1.3 (𝜑𝐿 ∈ ℝ)
3factsumint1.4 (𝜑𝑈 ∈ ℝ)
3factsumint1.5 ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)
3factsumint1.6 (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))
3factsumint1.7 ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)
3factsumint1.8 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)
3factsumint1.9 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))
Assertion
Ref Expression
3factsumint1 (𝜑 → ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘,𝑥   𝑥,𝐺   𝜑,𝑘,𝑥
Allowed substitution hints:   𝑈(𝑥,𝑘)   𝐹(𝑥,𝑘)   𝐺(𝑘)   𝐻(𝑥,𝑘)   𝐿(𝑥,𝑘)

Proof of Theorem 3factsumint1
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3factsumint1.1 . . . 4 𝐴 = (𝐿[,]𝑈)
2 3factsumint1.3 . . . . 5 (𝜑𝐿 ∈ ℝ)
3 3factsumint1.4 . . . . 5 (𝜑𝑈 ∈ ℝ)
4 iccmbl 25620 . . . . 5 ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐿[,]𝑈) ∈ dom vol)
52, 3, 4syl2anc 583 . . . 4 (𝜑 → (𝐿[,]𝑈) ∈ dom vol)
61, 5eqeltrid 2848 . . 3 (𝜑𝐴 ∈ dom vol)
7 3factsumint1.2 . . 3 (𝜑𝐵 ∈ Fin)
8 3factsumint1.5 . . . . 5 ((𝜑𝑥𝐴) → 𝐹 ∈ ℂ)
98adantrr 716 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐹 ∈ ℂ)
10 3factsumint1.7 . . . . . 6 ((𝜑𝑘𝐵) → 𝐺 ∈ ℂ)
1110adantrl 715 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐺 ∈ ℂ)
12 3factsumint1.8 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐻 ∈ ℂ)
1311, 12mulcld 11310 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → (𝐺 · 𝐻) ∈ ℂ)
149, 13mulcld 11310 . . 3 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → (𝐹 · (𝐺 · 𝐻)) ∈ ℂ)
15 ovex 7481 . . . . . . 7 (𝐿[,]𝑈) ∈ V
161, 15eqeltri 2840 . . . . . 6 𝐴 ∈ V
1716a1i 11 . . . . 5 ((𝜑𝑘𝐵) → 𝐴 ∈ V)
189anass1rs 654 . . . . 5 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐹 ∈ ℂ)
1913anass1rs 654 . . . . 5 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → (𝐺 · 𝐻) ∈ ℂ)
20 eqidd 2741 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴𝐹) = (𝑥𝐴𝐹))
21 eqidd 2741 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴 ↦ (𝐺 · 𝐻)) = (𝑥𝐴 ↦ (𝐺 · 𝐻)))
2217, 18, 19, 20, 21offval2 7734 . . . 4 ((𝜑𝑘𝐵) → ((𝑥𝐴𝐹) ∘f · (𝑥𝐴 ↦ (𝐺 · 𝐻))) = (𝑥𝐴 ↦ (𝐹 · (𝐺 · 𝐻))))
23 3factsumint1.6 . . . . . . 7 (𝜑 → (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ))
24 cnmbf 25713 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (𝑥𝐴𝐹) ∈ (𝐴cn→ℂ)) → (𝑥𝐴𝐹) ∈ MblFn)
256, 23, 24syl2anc 583 . . . . . 6 (𝜑 → (𝑥𝐴𝐹) ∈ MblFn)
2625adantr 480 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴𝐹) ∈ MblFn)
2712anass1rs 654 . . . . . 6 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐻 ∈ ℂ)
282adantr 480 . . . . . . 7 ((𝜑𝑘𝐵) → 𝐿 ∈ ℝ)
293adantr 480 . . . . . . 7 ((𝜑𝑘𝐵) → 𝑈 ∈ ℝ)
30 3factsumint1.9 . . . . . . . 8 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ (𝐴cn→ℂ))
311oveq1i 7458 . . . . . . . . 9 (𝐴cn→ℂ) = ((𝐿[,]𝑈)–cn→ℂ)
3231eleq2i 2836 . . . . . . . 8 ((𝑥𝐴𝐻) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ))
3330, 32sylib 218 . . . . . . 7 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ))
34 cnicciblnc 25898 . . . . . . 7 ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥𝐴𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → (𝑥𝐴𝐻) ∈ 𝐿1)
3528, 29, 33, 34syl3anc 1371 . . . . . 6 ((𝜑𝑘𝐵) → (𝑥𝐴𝐻) ∈ 𝐿1)
3610, 27, 35iblmulc2 25886 . . . . 5 ((𝜑𝑘𝐵) → (𝑥𝐴 ↦ (𝐺 · 𝐻)) ∈ 𝐿1)
3731eleq2i 2836 . . . . . . . . 9 ((𝑥𝐴𝐹) ∈ (𝐴cn→ℂ) ↔ (𝑥𝐴𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ))
3823, 37sylib 218 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ))
39 cniccbdd 25515 . . . . . . . 8 ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥𝐴𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
402, 3, 38, 39syl3anc 1371 . . . . . . 7 (𝜑 → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
4140adantr 480 . . . . . 6 ((𝜑𝑘𝐵) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
428ralrimiva 3152 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝐴 𝐹 ∈ ℂ)
43 dmmptg 6273 . . . . . . . . . . 11 (∀𝑥𝐴 𝐹 ∈ ℂ → dom (𝑥𝐴𝐹) = 𝐴)
4442, 43syl 17 . . . . . . . . . 10 (𝜑 → dom (𝑥𝐴𝐹) = 𝐴)
4544, 1eqtrdi 2796 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴𝐹) = (𝐿[,]𝑈))
4645raleqdv 3334 . . . . . . . 8 (𝜑 → (∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞 ↔ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞))
4746rexbidv 3185 . . . . . . 7 (𝜑 → (∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞 ↔ ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞))
4847adantr 480 . . . . . 6 ((𝜑𝑘𝐵) → (∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞 ↔ ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞))
4941, 48mpbird 257 . . . . 5 ((𝜑𝑘𝐵) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞)
50 bddmulibl 25894 . . . . 5 (((𝑥𝐴𝐹) ∈ MblFn ∧ (𝑥𝐴 ↦ (𝐺 · 𝐻)) ∈ 𝐿1 ∧ ∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥𝐴𝐹)(abs‘((𝑥𝐴𝐹)‘𝑟)) ≤ 𝑞) → ((𝑥𝐴𝐹) ∘f · (𝑥𝐴 ↦ (𝐺 · 𝐻))) ∈ 𝐿1)
5126, 36, 49, 50syl3anc 1371 . . . 4 ((𝜑𝑘𝐵) → ((𝑥𝐴𝐹) ∘f · (𝑥𝐴 ↦ (𝐺 · 𝐻))) ∈ 𝐿1)
5222, 51eqeltrrd 2845 . . 3 ((𝜑𝑘𝐵) → (𝑥𝐴 ↦ (𝐹 · (𝐺 · 𝐻))) ∈ 𝐿1)
536, 7, 14, 52itgfsum 25882 . 2 (𝜑 → ((𝑥𝐴 ↦ Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻))) ∈ 𝐿1 ∧ ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥))
5453simprd 495 1 (𝜑 → ∫𝐴Σ𝑘𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘𝐵𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488   class class class wbr 5166  cmpt 5249  dom cdm 5700  cfv 6573  (class class class)co 7448  f cof 7712  Fincfn 9003  cc 11182  cr 11183   · cmul 11189  cle 11325  [,]cicc 13410  abscabs 15283  Σcsu 15734  cnccncf 24921  volcvol 25517  MblFncmbf 25668  𝐿1cibl 25671  citg 25672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cn 23256  df-cnp 23257  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-itg 25677  df-0p 25724
This theorem is referenced by:  3factsumint  41982
  Copyright terms: Public domain W3C validator