![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3factsumint1 | Structured version Visualization version GIF version |
Description: Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.) |
Ref | Expression |
---|---|
3factsumint1.1 | ⊢ 𝐴 = (𝐿[,]𝑈) |
3factsumint1.2 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
3factsumint1.3 | ⊢ (𝜑 → 𝐿 ∈ ℝ) |
3factsumint1.4 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
3factsumint1.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) |
3factsumint1.6 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) |
3factsumint1.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐺 ∈ ℂ) |
3factsumint1.8 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐻 ∈ ℂ) |
3factsumint1.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cn→ℂ)) |
Ref | Expression |
---|---|
3factsumint1 | ⊢ (𝜑 → ∫𝐴Σ𝑘 ∈ 𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3factsumint1.1 | . . . 4 ⊢ 𝐴 = (𝐿[,]𝑈) | |
2 | 3factsumint1.3 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) | |
3 | 3factsumint1.4 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
4 | iccmbl 25615 | . . . . 5 ⊢ ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐿[,]𝑈) ∈ dom vol) | |
5 | 2, 3, 4 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐿[,]𝑈) ∈ dom vol) |
6 | 1, 5 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom vol) |
7 | 3factsumint1.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
8 | 3factsumint1.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) | |
9 | 8 | adantrr 717 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐹 ∈ ℂ) |
10 | 3factsumint1.7 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐺 ∈ ℂ) | |
11 | 10 | adantrl 716 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐺 ∈ ℂ) |
12 | 3factsumint1.8 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐻 ∈ ℂ) | |
13 | 11, 12 | mulcld 11279 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → (𝐺 · 𝐻) ∈ ℂ) |
14 | 9, 13 | mulcld 11279 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → (𝐹 · (𝐺 · 𝐻)) ∈ ℂ) |
15 | ovex 7464 | . . . . . . 7 ⊢ (𝐿[,]𝑈) ∈ V | |
16 | 1, 15 | eqeltri 2835 | . . . . . 6 ⊢ 𝐴 ∈ V |
17 | 16 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐴 ∈ V) |
18 | 9 | anass1rs 655 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) |
19 | 13 | anass1rs 655 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐺 · 𝐻) ∈ ℂ) |
20 | eqidd 2736 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝐹)) | |
21 | eqidd 2736 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻)) = (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻))) | |
22 | 17, 18, 19, 20, 21 | offval2 7717 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝐹) ∘f · (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻))) = (𝑥 ∈ 𝐴 ↦ (𝐹 · (𝐺 · 𝐻)))) |
23 | 3factsumint1.6 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) | |
24 | cnmbf 25708 | . . . . . . 7 ⊢ ((𝐴 ∈ dom vol ∧ (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ MblFn) | |
25 | 6, 23, 24 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ MblFn) |
26 | 25 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ MblFn) |
27 | 12 | anass1rs 655 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐻 ∈ ℂ) |
28 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐿 ∈ ℝ) |
29 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝑈 ∈ ℝ) |
30 | 3factsumint1.9 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cn→ℂ)) | |
31 | 1 | oveq1i 7441 | . . . . . . . . 9 ⊢ (𝐴–cn→ℂ) = ((𝐿[,]𝑈)–cn→ℂ) |
32 | 31 | eleq2i 2831 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cn→ℂ) ↔ (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ)) |
33 | 30, 32 | sylib 218 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ)) |
34 | cnicciblnc 25893 | . . . . . . 7 ⊢ ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ 𝐿1) | |
35 | 28, 29, 33, 34 | syl3anc 1370 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ 𝐿1) |
36 | 10, 27, 35 | iblmulc2 25881 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻)) ∈ 𝐿1) |
37 | 31 | eleq2i 2831 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ) ↔ (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ)) |
38 | 23, 37 | sylib 218 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ)) |
39 | cniccbdd 25510 | . . . . . . . 8 ⊢ ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) | |
40 | 2, 3, 38, 39 | syl3anc 1370 | . . . . . . 7 ⊢ (𝜑 → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) |
41 | 40 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) |
42 | 8 | ralrimiva 3144 | . . . . . . . . . . 11 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐹 ∈ ℂ) |
43 | dmmptg 6264 | . . . . . . . . . . 11 ⊢ (∀𝑥 ∈ 𝐴 𝐹 ∈ ℂ → dom (𝑥 ∈ 𝐴 ↦ 𝐹) = 𝐴) | |
44 | 42, 43 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐹) = 𝐴) |
45 | 44, 1 | eqtrdi 2791 | . . . . . . . . 9 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐹) = (𝐿[,]𝑈)) |
46 | 45 | raleqdv 3324 | . . . . . . . 8 ⊢ (𝜑 → (∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞 ↔ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞)) |
47 | 46 | rexbidv 3177 | . . . . . . 7 ⊢ (𝜑 → (∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞 ↔ ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞)) |
48 | 47 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞 ↔ ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞)) |
49 | 41, 48 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) |
50 | bddmulibl 25889 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐹) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻)) ∈ 𝐿1 ∧ ∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) → ((𝑥 ∈ 𝐴 ↦ 𝐹) ∘f · (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻))) ∈ 𝐿1) | |
51 | 26, 36, 49, 50 | syl3anc 1370 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝐹) ∘f · (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻))) ∈ 𝐿1) |
52 | 22, 51 | eqeltrrd 2840 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝐹 · (𝐺 · 𝐻))) ∈ 𝐿1) |
53 | 6, 7, 14, 52 | itgfsum 25877 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 (𝐹 · (𝐺 · 𝐻))) ∈ 𝐿1 ∧ ∫𝐴Σ𝑘 ∈ 𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)) |
54 | 53 | simprd 495 | 1 ⊢ (𝜑 → ∫𝐴Σ𝑘 ∈ 𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 Vcvv 3478 class class class wbr 5148 ↦ cmpt 5231 dom cdm 5689 ‘cfv 6563 (class class class)co 7431 ∘f cof 7695 Fincfn 8984 ℂcc 11151 ℝcr 11152 · cmul 11158 ≤ cle 11294 [,]cicc 13387 abscabs 15270 Σcsu 15719 –cn→ccncf 24916 volcvol 25512 MblFncmbf 25663 𝐿1cibl 25666 ∫citg 25667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cc 10473 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-ofr 7698 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-acn 9980 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-mulg 19099 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cn 23251 df-cnp 23252 df-cmp 23411 df-tx 23586 df-hmeo 23779 df-xms 24346 df-ms 24347 df-tms 24348 df-cncf 24918 df-ovol 25513 df-vol 25514 df-mbf 25668 df-itg1 25669 df-itg2 25670 df-ibl 25671 df-itg 25672 df-0p 25719 |
This theorem is referenced by: 3factsumint 42007 |
Copyright terms: Public domain | W3C validator |