![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3factsumint1 | Structured version Visualization version GIF version |
Description: Move constants out of integrals or sums and/or commute sum and integral. (Contributed by metakunt, 26-Apr-2024.) |
Ref | Expression |
---|---|
3factsumint1.1 | ⊢ 𝐴 = (𝐿[,]𝑈) |
3factsumint1.2 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
3factsumint1.3 | ⊢ (𝜑 → 𝐿 ∈ ℝ) |
3factsumint1.4 | ⊢ (𝜑 → 𝑈 ∈ ℝ) |
3factsumint1.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) |
3factsumint1.6 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) |
3factsumint1.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐺 ∈ ℂ) |
3factsumint1.8 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐻 ∈ ℂ) |
3factsumint1.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cn→ℂ)) |
Ref | Expression |
---|---|
3factsumint1 | ⊢ (𝜑 → ∫𝐴Σ𝑘 ∈ 𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3factsumint1.1 | . . . 4 ⊢ 𝐴 = (𝐿[,]𝑈) | |
2 | 3factsumint1.3 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) | |
3 | 3factsumint1.4 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ ℝ) | |
4 | iccmbl 25620 | . . . . 5 ⊢ ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐿[,]𝑈) ∈ dom vol) | |
5 | 2, 3, 4 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐿[,]𝑈) ∈ dom vol) |
6 | 1, 5 | eqeltrid 2848 | . . 3 ⊢ (𝜑 → 𝐴 ∈ dom vol) |
7 | 3factsumint1.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
8 | 3factsumint1.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) | |
9 | 8 | adantrr 716 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐹 ∈ ℂ) |
10 | 3factsumint1.7 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐺 ∈ ℂ) | |
11 | 10 | adantrl 715 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐺 ∈ ℂ) |
12 | 3factsumint1.8 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐻 ∈ ℂ) | |
13 | 11, 12 | mulcld 11310 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → (𝐺 · 𝐻) ∈ ℂ) |
14 | 9, 13 | mulcld 11310 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → (𝐹 · (𝐺 · 𝐻)) ∈ ℂ) |
15 | ovex 7481 | . . . . . . 7 ⊢ (𝐿[,]𝑈) ∈ V | |
16 | 1, 15 | eqeltri 2840 | . . . . . 6 ⊢ 𝐴 ∈ V |
17 | 16 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐴 ∈ V) |
18 | 9 | anass1rs 654 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐹 ∈ ℂ) |
19 | 13 | anass1rs 654 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐺 · 𝐻) ∈ ℂ) |
20 | eqidd 2741 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝐹)) | |
21 | eqidd 2741 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻)) = (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻))) | |
22 | 17, 18, 19, 20, 21 | offval2 7734 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝐹) ∘f · (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻))) = (𝑥 ∈ 𝐴 ↦ (𝐹 · (𝐺 · 𝐻)))) |
23 | 3factsumint1.6 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) | |
24 | cnmbf 25713 | . . . . . . 7 ⊢ ((𝐴 ∈ dom vol ∧ (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ)) → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ MblFn) | |
25 | 6, 23, 24 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ MblFn) |
26 | 25 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ MblFn) |
27 | 12 | anass1rs 654 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐻 ∈ ℂ) |
28 | 2 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝐿 ∈ ℝ) |
29 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → 𝑈 ∈ ℝ) |
30 | 3factsumint1.9 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cn→ℂ)) | |
31 | 1 | oveq1i 7458 | . . . . . . . . 9 ⊢ (𝐴–cn→ℂ) = ((𝐿[,]𝑈)–cn→ℂ) |
32 | 31 | eleq2i 2836 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐻) ∈ (𝐴–cn→ℂ) ↔ (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ)) |
33 | 30, 32 | sylib 218 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ)) |
34 | cnicciblnc 25898 | . . . . . . 7 ⊢ ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ 𝐿1) | |
35 | 28, 29, 33, 34 | syl3anc 1371 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐻) ∈ 𝐿1) |
36 | 10, 27, 35 | iblmulc2 25886 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻)) ∈ 𝐿1) |
37 | 31 | eleq2i 2836 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐹) ∈ (𝐴–cn→ℂ) ↔ (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ)) |
38 | 23, 37 | sylib 218 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ)) |
39 | cniccbdd 25515 | . . . . . . . 8 ⊢ ((𝐿 ∈ ℝ ∧ 𝑈 ∈ ℝ ∧ (𝑥 ∈ 𝐴 ↦ 𝐹) ∈ ((𝐿[,]𝑈)–cn→ℂ)) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) | |
40 | 2, 3, 38, 39 | syl3anc 1371 | . . . . . . 7 ⊢ (𝜑 → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) |
41 | 40 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) |
42 | 8 | ralrimiva 3152 | . . . . . . . . . . 11 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐹 ∈ ℂ) |
43 | dmmptg 6273 | . . . . . . . . . . 11 ⊢ (∀𝑥 ∈ 𝐴 𝐹 ∈ ℂ → dom (𝑥 ∈ 𝐴 ↦ 𝐹) = 𝐴) | |
44 | 42, 43 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐹) = 𝐴) |
45 | 44, 1 | eqtrdi 2796 | . . . . . . . . 9 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐹) = (𝐿[,]𝑈)) |
46 | 45 | raleqdv 3334 | . . . . . . . 8 ⊢ (𝜑 → (∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞 ↔ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞)) |
47 | 46 | rexbidv 3185 | . . . . . . 7 ⊢ (𝜑 → (∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞 ↔ ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞)) |
48 | 47 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞 ↔ ∃𝑞 ∈ ℝ ∀𝑟 ∈ (𝐿[,]𝑈)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞)) |
49 | 41, 48 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) |
50 | bddmulibl 25894 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐹) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻)) ∈ 𝐿1 ∧ ∃𝑞 ∈ ℝ ∀𝑟 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐹)(abs‘((𝑥 ∈ 𝐴 ↦ 𝐹)‘𝑟)) ≤ 𝑞) → ((𝑥 ∈ 𝐴 ↦ 𝐹) ∘f · (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻))) ∈ 𝐿1) | |
51 | 26, 36, 49, 50 | syl3anc 1371 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝐹) ∘f · (𝑥 ∈ 𝐴 ↦ (𝐺 · 𝐻))) ∈ 𝐿1) |
52 | 22, 51 | eqeltrrd 2845 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝐹 · (𝐺 · 𝐻))) ∈ 𝐿1) |
53 | 6, 7, 14, 52 | itgfsum 25882 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 (𝐹 · (𝐺 · 𝐻))) ∈ 𝐿1 ∧ ∫𝐴Σ𝑘 ∈ 𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥)) |
54 | 53 | simprd 495 | 1 ⊢ (𝜑 → ∫𝐴Σ𝑘 ∈ 𝐵 (𝐹 · (𝐺 · 𝐻)) d𝑥 = Σ𝑘 ∈ 𝐵 ∫𝐴(𝐹 · (𝐺 · 𝐻)) d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 class class class wbr 5166 ↦ cmpt 5249 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 Fincfn 9003 ℂcc 11182 ℝcr 11183 · cmul 11189 ≤ cle 11325 [,]cicc 13410 abscabs 15283 Σcsu 15734 –cn→ccncf 24921 volcvol 25517 MblFncmbf 25668 𝐿1cibl 25671 ∫citg 25672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 df-rlim 15535 df-sum 15735 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cn 23256 df-cnp 23257 df-cmp 23416 df-tx 23591 df-hmeo 23784 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-ovol 25518 df-vol 25519 df-mbf 25673 df-itg1 25674 df-itg2 25675 df-ibl 25676 df-itg 25677 df-0p 25724 |
This theorem is referenced by: 3factsumint 41982 |
Copyright terms: Public domain | W3C validator |