Step | Hyp | Ref
| Expression |
1 | | cycsubg.x |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝐺) |
2 | | cycsubg.t |
. . . . . . . 8
⊢ · =
(.g‘𝐺) |
3 | 1, 2 | mulgcl 18636 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → (𝑥 · 𝐴) ∈ 𝑋) |
4 | 3 | 3expa 1116 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) ∧ 𝐴 ∈ 𝑋) → (𝑥 · 𝐴) ∈ 𝑋) |
5 | 4 | an32s 648 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑋) |
6 | | cycsubg.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) |
7 | 5, 6 | fmptd 6970 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐹:ℤ⟶𝑋) |
8 | 7 | frnd 6592 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ran 𝐹 ⊆ 𝑋) |
9 | 7 | ffnd 6585 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐹 Fn ℤ) |
10 | | 1z 12280 |
. . . . 5
⊢ 1 ∈
ℤ |
11 | | fnfvelrn 6940 |
. . . . 5
⊢ ((𝐹 Fn ℤ ∧ 1 ∈
ℤ) → (𝐹‘1)
∈ ran 𝐹) |
12 | 9, 10, 11 | sylancl 585 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹‘1) ∈ ran 𝐹) |
13 | 12 | ne0d 4266 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ran 𝐹 ≠ ∅) |
14 | | df-3an 1087 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ 𝑋) ↔ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝐴 ∈ 𝑋)) |
15 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(+g‘𝐺) = (+g‘𝐺) |
16 | 1, 2, 15 | mulgdir 18650 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴)(+g‘𝐺)(𝑛 · 𝐴))) |
17 | 14, 16 | sylan2br 594 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝐴 ∈ 𝑋)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴)(+g‘𝐺)(𝑛 · 𝐴))) |
18 | 17 | anass1rs 651 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴)(+g‘𝐺)(𝑛 · 𝐴))) |
19 | | zaddcl 12290 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 + 𝑛) ∈ ℤ) |
20 | 19 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝑚 + 𝑛) ∈ ℤ) |
21 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑚 + 𝑛) → (𝑥 · 𝐴) = ((𝑚 + 𝑛) · 𝐴)) |
22 | | ovex 7288 |
. . . . . . . . . . . . 13
⊢ ((𝑚 + 𝑛) · 𝐴) ∈ V |
23 | 21, 6, 22 | fvmpt 6857 |
. . . . . . . . . . . 12
⊢ ((𝑚 + 𝑛) ∈ ℤ → (𝐹‘(𝑚 + 𝑛)) = ((𝑚 + 𝑛) · 𝐴)) |
24 | 20, 23 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹‘(𝑚 + 𝑛)) = ((𝑚 + 𝑛) · 𝐴)) |
25 | | oveq1 7262 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑚 → (𝑥 · 𝐴) = (𝑚 · 𝐴)) |
26 | | ovex 7288 |
. . . . . . . . . . . . . 14
⊢ (𝑚 · 𝐴) ∈ V |
27 | 25, 6, 26 | fvmpt 6857 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℤ → (𝐹‘𝑚) = (𝑚 · 𝐴)) |
28 | 27 | ad2antrl 724 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹‘𝑚) = (𝑚 · 𝐴)) |
29 | | oveq1 7262 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑛 → (𝑥 · 𝐴) = (𝑛 · 𝐴)) |
30 | | ovex 7288 |
. . . . . . . . . . . . . 14
⊢ (𝑛 · 𝐴) ∈ V |
31 | 29, 6, 30 | fvmpt 6857 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℤ → (𝐹‘𝑛) = (𝑛 · 𝐴)) |
32 | 31 | ad2antll 725 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹‘𝑛) = (𝑛 · 𝐴)) |
33 | 28, 32 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛)) = ((𝑚 · 𝐴)(+g‘𝐺)(𝑛 · 𝐴))) |
34 | 18, 24, 33 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹‘(𝑚 + 𝑛)) = ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛))) |
35 | | fnfvelrn 6940 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn ℤ ∧ (𝑚 + 𝑛) ∈ ℤ) → (𝐹‘(𝑚 + 𝑛)) ∈ ran 𝐹) |
36 | 9, 19, 35 | syl2an 595 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹‘(𝑚 + 𝑛)) ∈ ran 𝐹) |
37 | 34, 36 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛)) ∈ ran 𝐹) |
38 | 37 | anassrs 467 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛)) ∈ ran 𝐹) |
39 | 38 | ralrimiva 3107 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → ∀𝑛 ∈ ℤ ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛)) ∈ ran 𝐹) |
40 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑣 = (𝐹‘𝑛) → ((𝐹‘𝑚)(+g‘𝐺)𝑣) = ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛))) |
41 | 40 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑣 = (𝐹‘𝑛) → (((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹 ↔ ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛)) ∈ ran 𝐹)) |
42 | 41 | ralrn 6946 |
. . . . . . . . 9
⊢ (𝐹 Fn ℤ →
(∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑛 ∈ ℤ ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛)) ∈ ran 𝐹)) |
43 | 9, 42 | syl 17 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑛 ∈ ℤ ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛)) ∈ ran 𝐹)) |
44 | 43 | adantr 480 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → (∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑛 ∈ ℤ ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛)) ∈ ran 𝐹)) |
45 | 39, 44 | mpbird 256 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → ∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹) |
46 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(invg‘𝐺) = (invg‘𝐺) |
47 | 1, 2, 46 | mulgneg 18637 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → (-𝑚 · 𝐴) = ((invg‘𝐺)‘(𝑚 · 𝐴))) |
48 | 47 | 3expa 1116 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ∈ 𝑋) → (-𝑚 · 𝐴) = ((invg‘𝐺)‘(𝑚 · 𝐴))) |
49 | 48 | an32s 648 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → (-𝑚 · 𝐴) = ((invg‘𝐺)‘(𝑚 · 𝐴))) |
50 | | znegcl 12285 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℤ → -𝑚 ∈
ℤ) |
51 | 50 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → -𝑚 ∈ ℤ) |
52 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝑥 = -𝑚 → (𝑥 · 𝐴) = (-𝑚 · 𝐴)) |
53 | | ovex 7288 |
. . . . . . . . . 10
⊢ (-𝑚 · 𝐴) ∈ V |
54 | 52, 6, 53 | fvmpt 6857 |
. . . . . . . . 9
⊢ (-𝑚 ∈ ℤ → (𝐹‘-𝑚) = (-𝑚 · 𝐴)) |
55 | 51, 54 | syl 17 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹‘-𝑚) = (-𝑚 · 𝐴)) |
56 | 27 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹‘𝑚) = (𝑚 · 𝐴)) |
57 | 56 | fveq2d 6760 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) →
((invg‘𝐺)‘(𝐹‘𝑚)) = ((invg‘𝐺)‘(𝑚 · 𝐴))) |
58 | 49, 55, 57 | 3eqtr4d 2788 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹‘-𝑚) = ((invg‘𝐺)‘(𝐹‘𝑚))) |
59 | | fnfvelrn 6940 |
. . . . . . . 8
⊢ ((𝐹 Fn ℤ ∧ -𝑚 ∈ ℤ) → (𝐹‘-𝑚) ∈ ran 𝐹) |
60 | 9, 50, 59 | syl2an 595 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹‘-𝑚) ∈ ran 𝐹) |
61 | 58, 60 | eqeltrrd 2840 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) →
((invg‘𝐺)‘(𝐹‘𝑚)) ∈ ran 𝐹) |
62 | 45, 61 | jca 511 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → (∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘(𝐹‘𝑚)) ∈ ran 𝐹)) |
63 | 62 | ralrimiva 3107 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ∀𝑚 ∈ ℤ (∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘(𝐹‘𝑚)) ∈ ran 𝐹)) |
64 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑢 = (𝐹‘𝑚) → (𝑢(+g‘𝐺)𝑣) = ((𝐹‘𝑚)(+g‘𝐺)𝑣)) |
65 | 64 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑢 = (𝐹‘𝑚) → ((𝑢(+g‘𝐺)𝑣) ∈ ran 𝐹 ↔ ((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹)) |
66 | 65 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑢 = (𝐹‘𝑚) → (∀𝑣 ∈ ran 𝐹(𝑢(+g‘𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹)) |
67 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑢 = (𝐹‘𝑚) → ((invg‘𝐺)‘𝑢) = ((invg‘𝐺)‘(𝐹‘𝑚))) |
68 | 67 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑢 = (𝐹‘𝑚) → (((invg‘𝐺)‘𝑢) ∈ ran 𝐹 ↔ ((invg‘𝐺)‘(𝐹‘𝑚)) ∈ ran 𝐹)) |
69 | 66, 68 | anbi12d 630 |
. . . . . 6
⊢ (𝑢 = (𝐹‘𝑚) → ((∀𝑣 ∈ ran 𝐹(𝑢(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘𝑢) ∈ ran 𝐹) ↔ (∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘(𝐹‘𝑚)) ∈ ran 𝐹))) |
70 | 69 | ralrn 6946 |
. . . . 5
⊢ (𝐹 Fn ℤ →
(∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘𝑢) ∈ ran 𝐹) ↔ ∀𝑚 ∈ ℤ (∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘(𝐹‘𝑚)) ∈ ran 𝐹))) |
71 | 9, 70 | syl 17 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘𝑢) ∈ ran 𝐹) ↔ ∀𝑚 ∈ ℤ (∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘(𝐹‘𝑚)) ∈ ran 𝐹))) |
72 | 63, 71 | mpbird 256 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘𝑢) ∈ ran 𝐹)) |
73 | 1, 15, 46 | issubg2 18685 |
. . . 4
⊢ (𝐺 ∈ Grp → (ran 𝐹 ∈ (SubGrp‘𝐺) ↔ (ran 𝐹 ⊆ 𝑋 ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘𝑢) ∈ ran 𝐹)))) |
74 | 73 | adantr 480 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (ran 𝐹 ∈ (SubGrp‘𝐺) ↔ (ran 𝐹 ⊆ 𝑋 ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘𝑢) ∈ ran 𝐹)))) |
75 | 8, 13, 72, 74 | mpbir3and 1340 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ran 𝐹 ∈ (SubGrp‘𝐺)) |
76 | | oveq1 7262 |
. . . . . 6
⊢ (𝑥 = 1 → (𝑥 · 𝐴) = (1 · 𝐴)) |
77 | | ovex 7288 |
. . . . . 6
⊢ (1 · 𝐴) ∈ V |
78 | 76, 6, 77 | fvmpt 6857 |
. . . . 5
⊢ (1 ∈
ℤ → (𝐹‘1)
= (1 · 𝐴)) |
79 | 10, 78 | ax-mp 5 |
. . . 4
⊢ (𝐹‘1) = (1 · 𝐴) |
80 | 1, 2 | mulg1 18626 |
. . . . 5
⊢ (𝐴 ∈ 𝑋 → (1 · 𝐴) = 𝐴) |
81 | 80 | adantl 481 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (1 · 𝐴) = 𝐴) |
82 | 79, 81 | eqtrid 2790 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹‘1) = 𝐴) |
83 | 82, 12 | eqeltrrd 2840 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ ran 𝐹) |
84 | 75, 83 | jca 511 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (ran 𝐹 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran 𝐹)) |