| Step | Hyp | Ref
| Expression |
| 1 | | cycsubg.x |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝐺) |
| 2 | | cycsubg.t |
. . . . . . . 8
⊢ · =
(.g‘𝐺) |
| 3 | 1, 2 | mulgcl 19109 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → (𝑥 · 𝐴) ∈ 𝑋) |
| 4 | 3 | 3expa 1119 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) ∧ 𝐴 ∈ 𝑋) → (𝑥 · 𝐴) ∈ 𝑋) |
| 5 | 4 | an32s 652 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑋) |
| 6 | | cycsubg.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) |
| 7 | 5, 6 | fmptd 7134 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐹:ℤ⟶𝑋) |
| 8 | 7 | frnd 6744 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ran 𝐹 ⊆ 𝑋) |
| 9 | 7 | ffnd 6737 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐹 Fn ℤ) |
| 10 | | 1z 12647 |
. . . . 5
⊢ 1 ∈
ℤ |
| 11 | | fnfvelrn 7100 |
. . . . 5
⊢ ((𝐹 Fn ℤ ∧ 1 ∈
ℤ) → (𝐹‘1)
∈ ran 𝐹) |
| 12 | 9, 10, 11 | sylancl 586 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹‘1) ∈ ran 𝐹) |
| 13 | 12 | ne0d 4342 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ran 𝐹 ≠ ∅) |
| 14 | | df-3an 1089 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ 𝑋) ↔ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝐴 ∈ 𝑋)) |
| 15 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 16 | 1, 2, 15 | mulgdir 19124 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴)(+g‘𝐺)(𝑛 · 𝐴))) |
| 17 | 14, 16 | sylan2br 595 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝐴 ∈ 𝑋)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴)(+g‘𝐺)(𝑛 · 𝐴))) |
| 18 | 17 | anass1rs 655 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴)(+g‘𝐺)(𝑛 · 𝐴))) |
| 19 | | zaddcl 12657 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 + 𝑛) ∈ ℤ) |
| 20 | 19 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝑚 + 𝑛) ∈ ℤ) |
| 21 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑚 + 𝑛) → (𝑥 · 𝐴) = ((𝑚 + 𝑛) · 𝐴)) |
| 22 | | ovex 7464 |
. . . . . . . . . . . . 13
⊢ ((𝑚 + 𝑛) · 𝐴) ∈ V |
| 23 | 21, 6, 22 | fvmpt 7016 |
. . . . . . . . . . . 12
⊢ ((𝑚 + 𝑛) ∈ ℤ → (𝐹‘(𝑚 + 𝑛)) = ((𝑚 + 𝑛) · 𝐴)) |
| 24 | 20, 23 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹‘(𝑚 + 𝑛)) = ((𝑚 + 𝑛) · 𝐴)) |
| 25 | | oveq1 7438 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑚 → (𝑥 · 𝐴) = (𝑚 · 𝐴)) |
| 26 | | ovex 7464 |
. . . . . . . . . . . . . 14
⊢ (𝑚 · 𝐴) ∈ V |
| 27 | 25, 6, 26 | fvmpt 7016 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℤ → (𝐹‘𝑚) = (𝑚 · 𝐴)) |
| 28 | 27 | ad2antrl 728 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹‘𝑚) = (𝑚 · 𝐴)) |
| 29 | | oveq1 7438 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑛 → (𝑥 · 𝐴) = (𝑛 · 𝐴)) |
| 30 | | ovex 7464 |
. . . . . . . . . . . . . 14
⊢ (𝑛 · 𝐴) ∈ V |
| 31 | 29, 6, 30 | fvmpt 7016 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℤ → (𝐹‘𝑛) = (𝑛 · 𝐴)) |
| 32 | 31 | ad2antll 729 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹‘𝑛) = (𝑛 · 𝐴)) |
| 33 | 28, 32 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛)) = ((𝑚 · 𝐴)(+g‘𝐺)(𝑛 · 𝐴))) |
| 34 | 18, 24, 33 | 3eqtr4d 2787 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹‘(𝑚 + 𝑛)) = ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛))) |
| 35 | | fnfvelrn 7100 |
. . . . . . . . . . 11
⊢ ((𝐹 Fn ℤ ∧ (𝑚 + 𝑛) ∈ ℤ) → (𝐹‘(𝑚 + 𝑛)) ∈ ran 𝐹) |
| 36 | 9, 19, 35 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹‘(𝑚 + 𝑛)) ∈ ran 𝐹) |
| 37 | 34, 36 | eqeltrrd 2842 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛)) ∈ ran 𝐹) |
| 38 | 37 | anassrs 467 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛)) ∈ ran 𝐹) |
| 39 | 38 | ralrimiva 3146 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → ∀𝑛 ∈ ℤ ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛)) ∈ ran 𝐹) |
| 40 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑣 = (𝐹‘𝑛) → ((𝐹‘𝑚)(+g‘𝐺)𝑣) = ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛))) |
| 41 | 40 | eleq1d 2826 |
. . . . . . . . . 10
⊢ (𝑣 = (𝐹‘𝑛) → (((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹 ↔ ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛)) ∈ ran 𝐹)) |
| 42 | 41 | ralrn 7108 |
. . . . . . . . 9
⊢ (𝐹 Fn ℤ →
(∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑛 ∈ ℤ ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛)) ∈ ran 𝐹)) |
| 43 | 9, 42 | syl 17 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑛 ∈ ℤ ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛)) ∈ ran 𝐹)) |
| 44 | 43 | adantr 480 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → (∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑛 ∈ ℤ ((𝐹‘𝑚)(+g‘𝐺)(𝐹‘𝑛)) ∈ ran 𝐹)) |
| 45 | 39, 44 | mpbird 257 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → ∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹) |
| 46 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(invg‘𝐺) = (invg‘𝐺) |
| 47 | 1, 2, 46 | mulgneg 19110 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → (-𝑚 · 𝐴) = ((invg‘𝐺)‘(𝑚 · 𝐴))) |
| 48 | 47 | 3expa 1119 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ∈ 𝑋) → (-𝑚 · 𝐴) = ((invg‘𝐺)‘(𝑚 · 𝐴))) |
| 49 | 48 | an32s 652 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → (-𝑚 · 𝐴) = ((invg‘𝐺)‘(𝑚 · 𝐴))) |
| 50 | | znegcl 12652 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℤ → -𝑚 ∈
ℤ) |
| 51 | 50 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → -𝑚 ∈ ℤ) |
| 52 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝑥 = -𝑚 → (𝑥 · 𝐴) = (-𝑚 · 𝐴)) |
| 53 | | ovex 7464 |
. . . . . . . . . 10
⊢ (-𝑚 · 𝐴) ∈ V |
| 54 | 52, 6, 53 | fvmpt 7016 |
. . . . . . . . 9
⊢ (-𝑚 ∈ ℤ → (𝐹‘-𝑚) = (-𝑚 · 𝐴)) |
| 55 | 51, 54 | syl 17 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹‘-𝑚) = (-𝑚 · 𝐴)) |
| 56 | 27 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹‘𝑚) = (𝑚 · 𝐴)) |
| 57 | 56 | fveq2d 6910 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) →
((invg‘𝐺)‘(𝐹‘𝑚)) = ((invg‘𝐺)‘(𝑚 · 𝐴))) |
| 58 | 49, 55, 57 | 3eqtr4d 2787 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹‘-𝑚) = ((invg‘𝐺)‘(𝐹‘𝑚))) |
| 59 | | fnfvelrn 7100 |
. . . . . . . 8
⊢ ((𝐹 Fn ℤ ∧ -𝑚 ∈ ℤ) → (𝐹‘-𝑚) ∈ ran 𝐹) |
| 60 | 9, 50, 59 | syl2an 596 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹‘-𝑚) ∈ ran 𝐹) |
| 61 | 58, 60 | eqeltrrd 2842 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) →
((invg‘𝐺)‘(𝐹‘𝑚)) ∈ ran 𝐹) |
| 62 | 45, 61 | jca 511 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑚 ∈ ℤ) → (∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘(𝐹‘𝑚)) ∈ ran 𝐹)) |
| 63 | 62 | ralrimiva 3146 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ∀𝑚 ∈ ℤ (∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘(𝐹‘𝑚)) ∈ ran 𝐹)) |
| 64 | | oveq1 7438 |
. . . . . . . . 9
⊢ (𝑢 = (𝐹‘𝑚) → (𝑢(+g‘𝐺)𝑣) = ((𝐹‘𝑚)(+g‘𝐺)𝑣)) |
| 65 | 64 | eleq1d 2826 |
. . . . . . . 8
⊢ (𝑢 = (𝐹‘𝑚) → ((𝑢(+g‘𝐺)𝑣) ∈ ran 𝐹 ↔ ((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹)) |
| 66 | 65 | ralbidv 3178 |
. . . . . . 7
⊢ (𝑢 = (𝐹‘𝑚) → (∀𝑣 ∈ ran 𝐹(𝑢(+g‘𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹)) |
| 67 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑢 = (𝐹‘𝑚) → ((invg‘𝐺)‘𝑢) = ((invg‘𝐺)‘(𝐹‘𝑚))) |
| 68 | 67 | eleq1d 2826 |
. . . . . . 7
⊢ (𝑢 = (𝐹‘𝑚) → (((invg‘𝐺)‘𝑢) ∈ ran 𝐹 ↔ ((invg‘𝐺)‘(𝐹‘𝑚)) ∈ ran 𝐹)) |
| 69 | 66, 68 | anbi12d 632 |
. . . . . 6
⊢ (𝑢 = (𝐹‘𝑚) → ((∀𝑣 ∈ ran 𝐹(𝑢(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘𝑢) ∈ ran 𝐹) ↔ (∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘(𝐹‘𝑚)) ∈ ran 𝐹))) |
| 70 | 69 | ralrn 7108 |
. . . . 5
⊢ (𝐹 Fn ℤ →
(∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘𝑢) ∈ ran 𝐹) ↔ ∀𝑚 ∈ ℤ (∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘(𝐹‘𝑚)) ∈ ran 𝐹))) |
| 71 | 9, 70 | syl 17 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘𝑢) ∈ ran 𝐹) ↔ ∀𝑚 ∈ ℤ (∀𝑣 ∈ ran 𝐹((𝐹‘𝑚)(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘(𝐹‘𝑚)) ∈ ran 𝐹))) |
| 72 | 63, 71 | mpbird 257 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘𝑢) ∈ ran 𝐹)) |
| 73 | 1, 15, 46 | issubg2 19159 |
. . . 4
⊢ (𝐺 ∈ Grp → (ran 𝐹 ∈ (SubGrp‘𝐺) ↔ (ran 𝐹 ⊆ 𝑋 ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘𝑢) ∈ ran 𝐹)))) |
| 74 | 73 | adantr 480 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (ran 𝐹 ∈ (SubGrp‘𝐺) ↔ (ran 𝐹 ⊆ 𝑋 ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g‘𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg‘𝐺)‘𝑢) ∈ ran 𝐹)))) |
| 75 | 8, 13, 72, 74 | mpbir3and 1343 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ran 𝐹 ∈ (SubGrp‘𝐺)) |
| 76 | | oveq1 7438 |
. . . . . 6
⊢ (𝑥 = 1 → (𝑥 · 𝐴) = (1 · 𝐴)) |
| 77 | | ovex 7464 |
. . . . . 6
⊢ (1 · 𝐴) ∈ V |
| 78 | 76, 6, 77 | fvmpt 7016 |
. . . . 5
⊢ (1 ∈
ℤ → (𝐹‘1)
= (1 · 𝐴)) |
| 79 | 10, 78 | ax-mp 5 |
. . . 4
⊢ (𝐹‘1) = (1 · 𝐴) |
| 80 | 1, 2 | mulg1 19099 |
. . . . 5
⊢ (𝐴 ∈ 𝑋 → (1 · 𝐴) = 𝐴) |
| 81 | 80 | adantl 481 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (1 · 𝐴) = 𝐴) |
| 82 | 79, 81 | eqtrid 2789 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹‘1) = 𝐴) |
| 83 | 82, 12 | eqeltrrd 2842 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐴 ∈ ran 𝐹) |
| 84 | 75, 83 | jca 511 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (ran 𝐹 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran 𝐹)) |