MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubgcl Structured version   Visualization version   GIF version

Theorem cycsubgcl 19246
Description: The set of integer powers of an element 𝐴 of a group forms a subgroup containing 𝐴, called the cyclic group generated by the element 𝐴. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
cycsubg.x 𝑋 = (Base‘𝐺)
cycsubg.t · = (.g𝐺)
cycsubg.f 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
cycsubgcl ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (ran 𝐹 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran 𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem cycsubgcl
Dummy variables 𝑚 𝑛 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycsubg.x . . . . . . . 8 𝑋 = (Base‘𝐺)
2 cycsubg.t . . . . . . . 8 · = (.g𝐺)
31, 2mulgcl 19131 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
433expa 1118 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
54an32s 651 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑋)
6 cycsubg.f . . . . 5 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
75, 6fmptd 7148 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐹:ℤ⟶𝑋)
87frnd 6755 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ran 𝐹𝑋)
97ffnd 6748 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐹 Fn ℤ)
10 1z 12673 . . . . 5 1 ∈ ℤ
11 fnfvelrn 7114 . . . . 5 ((𝐹 Fn ℤ ∧ 1 ∈ ℤ) → (𝐹‘1) ∈ ran 𝐹)
129, 10, 11sylancl 585 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹‘1) ∈ ran 𝐹)
1312ne0d 4365 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ran 𝐹 ≠ ∅)
14 df-3an 1089 . . . . . . . . . . . . 13 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐴𝑋) ↔ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝐴𝑋))
15 eqid 2740 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
161, 2, 15mulgdir 19146 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐴𝑋)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴)(+g𝐺)(𝑛 · 𝐴)))
1714, 16sylan2br 594 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝐴𝑋)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴)(+g𝐺)(𝑛 · 𝐴)))
1817anass1rs 654 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴)(+g𝐺)(𝑛 · 𝐴)))
19 zaddcl 12683 . . . . . . . . . . . . 13 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 + 𝑛) ∈ ℤ)
2019adantl 481 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝑚 + 𝑛) ∈ ℤ)
21 oveq1 7455 . . . . . . . . . . . . 13 (𝑥 = (𝑚 + 𝑛) → (𝑥 · 𝐴) = ((𝑚 + 𝑛) · 𝐴))
22 ovex 7481 . . . . . . . . . . . . 13 ((𝑚 + 𝑛) · 𝐴) ∈ V
2321, 6, 22fvmpt 7029 . . . . . . . . . . . 12 ((𝑚 + 𝑛) ∈ ℤ → (𝐹‘(𝑚 + 𝑛)) = ((𝑚 + 𝑛) · 𝐴))
2420, 23syl 17 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹‘(𝑚 + 𝑛)) = ((𝑚 + 𝑛) · 𝐴))
25 oveq1 7455 . . . . . . . . . . . . . 14 (𝑥 = 𝑚 → (𝑥 · 𝐴) = (𝑚 · 𝐴))
26 ovex 7481 . . . . . . . . . . . . . 14 (𝑚 · 𝐴) ∈ V
2725, 6, 26fvmpt 7029 . . . . . . . . . . . . 13 (𝑚 ∈ ℤ → (𝐹𝑚) = (𝑚 · 𝐴))
2827ad2antrl 727 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹𝑚) = (𝑚 · 𝐴))
29 oveq1 7455 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → (𝑥 · 𝐴) = (𝑛 · 𝐴))
30 ovex 7481 . . . . . . . . . . . . . 14 (𝑛 · 𝐴) ∈ V
3129, 6, 30fvmpt 7029 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (𝐹𝑛) = (𝑛 · 𝐴))
3231ad2antll 728 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹𝑛) = (𝑛 · 𝐴))
3328, 32oveq12d 7466 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) = ((𝑚 · 𝐴)(+g𝐺)(𝑛 · 𝐴)))
3418, 24, 333eqtr4d 2790 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹‘(𝑚 + 𝑛)) = ((𝐹𝑚)(+g𝐺)(𝐹𝑛)))
35 fnfvelrn 7114 . . . . . . . . . . 11 ((𝐹 Fn ℤ ∧ (𝑚 + 𝑛) ∈ ℤ) → (𝐹‘(𝑚 + 𝑛)) ∈ ran 𝐹)
369, 19, 35syl2an 595 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹‘(𝑚 + 𝑛)) ∈ ran 𝐹)
3734, 36eqeltrrd 2845 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹)
3837anassrs 467 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹)
3938ralrimiva 3152 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → ∀𝑛 ∈ ℤ ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹)
40 oveq2 7456 . . . . . . . . . . 11 (𝑣 = (𝐹𝑛) → ((𝐹𝑚)(+g𝐺)𝑣) = ((𝐹𝑚)(+g𝐺)(𝐹𝑛)))
4140eleq1d 2829 . . . . . . . . . 10 (𝑣 = (𝐹𝑛) → (((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ↔ ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹))
4241ralrn 7122 . . . . . . . . 9 (𝐹 Fn ℤ → (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑛 ∈ ℤ ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹))
439, 42syl 17 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑛 ∈ ℤ ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹))
4443adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑛 ∈ ℤ ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹))
4539, 44mpbird 257 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → ∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹)
46 eqid 2740 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
471, 2, 46mulgneg 19132 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝐴𝑋) → (-𝑚 · 𝐴) = ((invg𝐺)‘(𝑚 · 𝐴)))
48473expa 1118 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑚 ∈ ℤ) ∧ 𝐴𝑋) → (-𝑚 · 𝐴) = ((invg𝐺)‘(𝑚 · 𝐴)))
4948an32s 651 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (-𝑚 · 𝐴) = ((invg𝐺)‘(𝑚 · 𝐴)))
50 znegcl 12678 . . . . . . . . . 10 (𝑚 ∈ ℤ → -𝑚 ∈ ℤ)
5150adantl 481 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → -𝑚 ∈ ℤ)
52 oveq1 7455 . . . . . . . . . 10 (𝑥 = -𝑚 → (𝑥 · 𝐴) = (-𝑚 · 𝐴))
53 ovex 7481 . . . . . . . . . 10 (-𝑚 · 𝐴) ∈ V
5452, 6, 53fvmpt 7029 . . . . . . . . 9 (-𝑚 ∈ ℤ → (𝐹‘-𝑚) = (-𝑚 · 𝐴))
5551, 54syl 17 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹‘-𝑚) = (-𝑚 · 𝐴))
5627adantl 481 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹𝑚) = (𝑚 · 𝐴))
5756fveq2d 6924 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → ((invg𝐺)‘(𝐹𝑚)) = ((invg𝐺)‘(𝑚 · 𝐴)))
5849, 55, 573eqtr4d 2790 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹‘-𝑚) = ((invg𝐺)‘(𝐹𝑚)))
59 fnfvelrn 7114 . . . . . . . 8 ((𝐹 Fn ℤ ∧ -𝑚 ∈ ℤ) → (𝐹‘-𝑚) ∈ ran 𝐹)
609, 50, 59syl2an 595 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹‘-𝑚) ∈ ran 𝐹)
6158, 60eqeltrrd 2845 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹)
6245, 61jca 511 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹))
6362ralrimiva 3152 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ∀𝑚 ∈ ℤ (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹))
64 oveq1 7455 . . . . . . . . 9 (𝑢 = (𝐹𝑚) → (𝑢(+g𝐺)𝑣) = ((𝐹𝑚)(+g𝐺)𝑣))
6564eleq1d 2829 . . . . . . . 8 (𝑢 = (𝐹𝑚) → ((𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ↔ ((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹))
6665ralbidv 3184 . . . . . . 7 (𝑢 = (𝐹𝑚) → (∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹))
67 fveq2 6920 . . . . . . . 8 (𝑢 = (𝐹𝑚) → ((invg𝐺)‘𝑢) = ((invg𝐺)‘(𝐹𝑚)))
6867eleq1d 2829 . . . . . . 7 (𝑢 = (𝐹𝑚) → (((invg𝐺)‘𝑢) ∈ ran 𝐹 ↔ ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹))
6966, 68anbi12d 631 . . . . . 6 (𝑢 = (𝐹𝑚) → ((∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘𝑢) ∈ ran 𝐹) ↔ (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹)))
7069ralrn 7122 . . . . 5 (𝐹 Fn ℤ → (∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘𝑢) ∈ ran 𝐹) ↔ ∀𝑚 ∈ ℤ (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹)))
719, 70syl 17 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘𝑢) ∈ ran 𝐹) ↔ ∀𝑚 ∈ ℤ (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹)))
7263, 71mpbird 257 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘𝑢) ∈ ran 𝐹))
731, 15, 46issubg2 19181 . . . 4 (𝐺 ∈ Grp → (ran 𝐹 ∈ (SubGrp‘𝐺) ↔ (ran 𝐹𝑋 ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘𝑢) ∈ ran 𝐹))))
7473adantr 480 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (ran 𝐹 ∈ (SubGrp‘𝐺) ↔ (ran 𝐹𝑋 ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘𝑢) ∈ ran 𝐹))))
758, 13, 72, 74mpbir3and 1342 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ran 𝐹 ∈ (SubGrp‘𝐺))
76 oveq1 7455 . . . . . 6 (𝑥 = 1 → (𝑥 · 𝐴) = (1 · 𝐴))
77 ovex 7481 . . . . . 6 (1 · 𝐴) ∈ V
7876, 6, 77fvmpt 7029 . . . . 5 (1 ∈ ℤ → (𝐹‘1) = (1 · 𝐴))
7910, 78ax-mp 5 . . . 4 (𝐹‘1) = (1 · 𝐴)
801, 2mulg1 19121 . . . . 5 (𝐴𝑋 → (1 · 𝐴) = 𝐴)
8180adantl 481 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (1 · 𝐴) = 𝐴)
8279, 81eqtrid 2792 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹‘1) = 𝐴)
8382, 12eqeltrrd 2845 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐴 ∈ ran 𝐹)
8475, 83jca 511 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (ran 𝐹 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wss 3976  c0 4352  cmpt 5249  ran crn 5701   Fn wfn 6568  cfv 6573  (class class class)co 7448  1c1 11185   + caddc 11187  -cneg 11521  cz 12639  Basecbs 17258  +gcplusg 17311  Grpcgrp 18973  invgcminusg 18974  .gcmg 19107  SubGrpcsubg 19160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-mulg 19108  df-subg 19163
This theorem is referenced by:  cycsubg  19248  cycsubgcld  19249  oddvds2  19608  cycsubgcyg  19943
  Copyright terms: Public domain W3C validator