MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubgcl Structured version   Visualization version   GIF version

Theorem cycsubgcl 19138
Description: The set of integer powers of an element 𝐴 of a group forms a subgroup containing 𝐴, called the cyclic group generated by the element 𝐴. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
cycsubg.x 𝑋 = (Base‘𝐺)
cycsubg.t · = (.g𝐺)
cycsubg.f 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
cycsubgcl ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (ran 𝐹 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran 𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem cycsubgcl
Dummy variables 𝑚 𝑛 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycsubg.x . . . . . . . 8 𝑋 = (Base‘𝐺)
2 cycsubg.t . . . . . . . 8 · = (.g𝐺)
31, 2mulgcl 19023 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
433expa 1118 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
54an32s 652 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑋)
6 cycsubg.f . . . . 5 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
75, 6fmptd 7086 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐹:ℤ⟶𝑋)
87frnd 6696 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ran 𝐹𝑋)
97ffnd 6689 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐹 Fn ℤ)
10 1z 12563 . . . . 5 1 ∈ ℤ
11 fnfvelrn 7052 . . . . 5 ((𝐹 Fn ℤ ∧ 1 ∈ ℤ) → (𝐹‘1) ∈ ran 𝐹)
129, 10, 11sylancl 586 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹‘1) ∈ ran 𝐹)
1312ne0d 4305 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ran 𝐹 ≠ ∅)
14 df-3an 1088 . . . . . . . . . . . . 13 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐴𝑋) ↔ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝐴𝑋))
15 eqid 2729 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
161, 2, 15mulgdir 19038 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐴𝑋)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴)(+g𝐺)(𝑛 · 𝐴)))
1714, 16sylan2br 595 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝐴𝑋)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴)(+g𝐺)(𝑛 · 𝐴)))
1817anass1rs 655 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴)(+g𝐺)(𝑛 · 𝐴)))
19 zaddcl 12573 . . . . . . . . . . . . 13 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 + 𝑛) ∈ ℤ)
2019adantl 481 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝑚 + 𝑛) ∈ ℤ)
21 oveq1 7394 . . . . . . . . . . . . 13 (𝑥 = (𝑚 + 𝑛) → (𝑥 · 𝐴) = ((𝑚 + 𝑛) · 𝐴))
22 ovex 7420 . . . . . . . . . . . . 13 ((𝑚 + 𝑛) · 𝐴) ∈ V
2321, 6, 22fvmpt 6968 . . . . . . . . . . . 12 ((𝑚 + 𝑛) ∈ ℤ → (𝐹‘(𝑚 + 𝑛)) = ((𝑚 + 𝑛) · 𝐴))
2420, 23syl 17 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹‘(𝑚 + 𝑛)) = ((𝑚 + 𝑛) · 𝐴))
25 oveq1 7394 . . . . . . . . . . . . . 14 (𝑥 = 𝑚 → (𝑥 · 𝐴) = (𝑚 · 𝐴))
26 ovex 7420 . . . . . . . . . . . . . 14 (𝑚 · 𝐴) ∈ V
2725, 6, 26fvmpt 6968 . . . . . . . . . . . . 13 (𝑚 ∈ ℤ → (𝐹𝑚) = (𝑚 · 𝐴))
2827ad2antrl 728 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹𝑚) = (𝑚 · 𝐴))
29 oveq1 7394 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → (𝑥 · 𝐴) = (𝑛 · 𝐴))
30 ovex 7420 . . . . . . . . . . . . . 14 (𝑛 · 𝐴) ∈ V
3129, 6, 30fvmpt 6968 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (𝐹𝑛) = (𝑛 · 𝐴))
3231ad2antll 729 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹𝑛) = (𝑛 · 𝐴))
3328, 32oveq12d 7405 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) = ((𝑚 · 𝐴)(+g𝐺)(𝑛 · 𝐴)))
3418, 24, 333eqtr4d 2774 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹‘(𝑚 + 𝑛)) = ((𝐹𝑚)(+g𝐺)(𝐹𝑛)))
35 fnfvelrn 7052 . . . . . . . . . . 11 ((𝐹 Fn ℤ ∧ (𝑚 + 𝑛) ∈ ℤ) → (𝐹‘(𝑚 + 𝑛)) ∈ ran 𝐹)
369, 19, 35syl2an 596 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹‘(𝑚 + 𝑛)) ∈ ran 𝐹)
3734, 36eqeltrrd 2829 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹)
3837anassrs 467 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹)
3938ralrimiva 3125 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → ∀𝑛 ∈ ℤ ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹)
40 oveq2 7395 . . . . . . . . . . 11 (𝑣 = (𝐹𝑛) → ((𝐹𝑚)(+g𝐺)𝑣) = ((𝐹𝑚)(+g𝐺)(𝐹𝑛)))
4140eleq1d 2813 . . . . . . . . . 10 (𝑣 = (𝐹𝑛) → (((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ↔ ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹))
4241ralrn 7060 . . . . . . . . 9 (𝐹 Fn ℤ → (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑛 ∈ ℤ ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹))
439, 42syl 17 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑛 ∈ ℤ ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹))
4443adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑛 ∈ ℤ ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹))
4539, 44mpbird 257 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → ∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹)
46 eqid 2729 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
471, 2, 46mulgneg 19024 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝐴𝑋) → (-𝑚 · 𝐴) = ((invg𝐺)‘(𝑚 · 𝐴)))
48473expa 1118 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑚 ∈ ℤ) ∧ 𝐴𝑋) → (-𝑚 · 𝐴) = ((invg𝐺)‘(𝑚 · 𝐴)))
4948an32s 652 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (-𝑚 · 𝐴) = ((invg𝐺)‘(𝑚 · 𝐴)))
50 znegcl 12568 . . . . . . . . . 10 (𝑚 ∈ ℤ → -𝑚 ∈ ℤ)
5150adantl 481 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → -𝑚 ∈ ℤ)
52 oveq1 7394 . . . . . . . . . 10 (𝑥 = -𝑚 → (𝑥 · 𝐴) = (-𝑚 · 𝐴))
53 ovex 7420 . . . . . . . . . 10 (-𝑚 · 𝐴) ∈ V
5452, 6, 53fvmpt 6968 . . . . . . . . 9 (-𝑚 ∈ ℤ → (𝐹‘-𝑚) = (-𝑚 · 𝐴))
5551, 54syl 17 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹‘-𝑚) = (-𝑚 · 𝐴))
5627adantl 481 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹𝑚) = (𝑚 · 𝐴))
5756fveq2d 6862 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → ((invg𝐺)‘(𝐹𝑚)) = ((invg𝐺)‘(𝑚 · 𝐴)))
5849, 55, 573eqtr4d 2774 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹‘-𝑚) = ((invg𝐺)‘(𝐹𝑚)))
59 fnfvelrn 7052 . . . . . . . 8 ((𝐹 Fn ℤ ∧ -𝑚 ∈ ℤ) → (𝐹‘-𝑚) ∈ ran 𝐹)
609, 50, 59syl2an 596 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹‘-𝑚) ∈ ran 𝐹)
6158, 60eqeltrrd 2829 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹)
6245, 61jca 511 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹))
6362ralrimiva 3125 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ∀𝑚 ∈ ℤ (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹))
64 oveq1 7394 . . . . . . . . 9 (𝑢 = (𝐹𝑚) → (𝑢(+g𝐺)𝑣) = ((𝐹𝑚)(+g𝐺)𝑣))
6564eleq1d 2813 . . . . . . . 8 (𝑢 = (𝐹𝑚) → ((𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ↔ ((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹))
6665ralbidv 3156 . . . . . . 7 (𝑢 = (𝐹𝑚) → (∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹))
67 fveq2 6858 . . . . . . . 8 (𝑢 = (𝐹𝑚) → ((invg𝐺)‘𝑢) = ((invg𝐺)‘(𝐹𝑚)))
6867eleq1d 2813 . . . . . . 7 (𝑢 = (𝐹𝑚) → (((invg𝐺)‘𝑢) ∈ ran 𝐹 ↔ ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹))
6966, 68anbi12d 632 . . . . . 6 (𝑢 = (𝐹𝑚) → ((∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘𝑢) ∈ ran 𝐹) ↔ (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹)))
7069ralrn 7060 . . . . 5 (𝐹 Fn ℤ → (∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘𝑢) ∈ ran 𝐹) ↔ ∀𝑚 ∈ ℤ (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹)))
719, 70syl 17 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘𝑢) ∈ ran 𝐹) ↔ ∀𝑚 ∈ ℤ (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹)))
7263, 71mpbird 257 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘𝑢) ∈ ran 𝐹))
731, 15, 46issubg2 19073 . . . 4 (𝐺 ∈ Grp → (ran 𝐹 ∈ (SubGrp‘𝐺) ↔ (ran 𝐹𝑋 ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘𝑢) ∈ ran 𝐹))))
7473adantr 480 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (ran 𝐹 ∈ (SubGrp‘𝐺) ↔ (ran 𝐹𝑋 ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘𝑢) ∈ ran 𝐹))))
758, 13, 72, 74mpbir3and 1343 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ran 𝐹 ∈ (SubGrp‘𝐺))
76 oveq1 7394 . . . . . 6 (𝑥 = 1 → (𝑥 · 𝐴) = (1 · 𝐴))
77 ovex 7420 . . . . . 6 (1 · 𝐴) ∈ V
7876, 6, 77fvmpt 6968 . . . . 5 (1 ∈ ℤ → (𝐹‘1) = (1 · 𝐴))
7910, 78ax-mp 5 . . . 4 (𝐹‘1) = (1 · 𝐴)
801, 2mulg1 19013 . . . . 5 (𝐴𝑋 → (1 · 𝐴) = 𝐴)
8180adantl 481 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (1 · 𝐴) = 𝐴)
8279, 81eqtrid 2776 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹‘1) = 𝐴)
8382, 12eqeltrrd 2829 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐴 ∈ ran 𝐹)
8475, 83jca 511 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (ran 𝐹 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3914  c0 4296  cmpt 5188  ran crn 5639   Fn wfn 6506  cfv 6511  (class class class)co 7387  1c1 11069   + caddc 11071  -cneg 11406  cz 12529  Basecbs 17179  +gcplusg 17220  Grpcgrp 18865  invgcminusg 18866  .gcmg 18999  SubGrpcsubg 19052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-mulg 19000  df-subg 19055
This theorem is referenced by:  cycsubg  19140  cycsubgcld  19141  oddvds2  19496  cycsubgcyg  19831
  Copyright terms: Public domain W3C validator