MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubgcl Structured version   Visualization version   GIF version

Theorem cycsubgcl 18825
Description: The set of integer powers of an element 𝐴 of a group forms a subgroup containing 𝐴, called the cyclic group generated by the element 𝐴. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
cycsubg.x 𝑋 = (Base‘𝐺)
cycsubg.t · = (.g𝐺)
cycsubg.f 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
cycsubgcl ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (ran 𝐹 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran 𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem cycsubgcl
Dummy variables 𝑚 𝑛 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycsubg.x . . . . . . . 8 𝑋 = (Base‘𝐺)
2 cycsubg.t . . . . . . . 8 · = (.g𝐺)
31, 2mulgcl 18721 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
433expa 1117 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
54an32s 649 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑋)
6 cycsubg.f . . . . 5 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
75, 6fmptd 6988 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐹:ℤ⟶𝑋)
87frnd 6608 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ran 𝐹𝑋)
97ffnd 6601 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐹 Fn ℤ)
10 1z 12350 . . . . 5 1 ∈ ℤ
11 fnfvelrn 6958 . . . . 5 ((𝐹 Fn ℤ ∧ 1 ∈ ℤ) → (𝐹‘1) ∈ ran 𝐹)
129, 10, 11sylancl 586 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹‘1) ∈ ran 𝐹)
1312ne0d 4269 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ran 𝐹 ≠ ∅)
14 df-3an 1088 . . . . . . . . . . . . 13 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐴𝑋) ↔ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝐴𝑋))
15 eqid 2738 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
161, 2, 15mulgdir 18735 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐴𝑋)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴)(+g𝐺)(𝑛 · 𝐴)))
1714, 16sylan2br 595 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝐴𝑋)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴)(+g𝐺)(𝑛 · 𝐴)))
1817anass1rs 652 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑚 + 𝑛) · 𝐴) = ((𝑚 · 𝐴)(+g𝐺)(𝑛 · 𝐴)))
19 zaddcl 12360 . . . . . . . . . . . . 13 ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 + 𝑛) ∈ ℤ)
2019adantl 482 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝑚 + 𝑛) ∈ ℤ)
21 oveq1 7282 . . . . . . . . . . . . 13 (𝑥 = (𝑚 + 𝑛) → (𝑥 · 𝐴) = ((𝑚 + 𝑛) · 𝐴))
22 ovex 7308 . . . . . . . . . . . . 13 ((𝑚 + 𝑛) · 𝐴) ∈ V
2321, 6, 22fvmpt 6875 . . . . . . . . . . . 12 ((𝑚 + 𝑛) ∈ ℤ → (𝐹‘(𝑚 + 𝑛)) = ((𝑚 + 𝑛) · 𝐴))
2420, 23syl 17 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹‘(𝑚 + 𝑛)) = ((𝑚 + 𝑛) · 𝐴))
25 oveq1 7282 . . . . . . . . . . . . . 14 (𝑥 = 𝑚 → (𝑥 · 𝐴) = (𝑚 · 𝐴))
26 ovex 7308 . . . . . . . . . . . . . 14 (𝑚 · 𝐴) ∈ V
2725, 6, 26fvmpt 6875 . . . . . . . . . . . . 13 (𝑚 ∈ ℤ → (𝐹𝑚) = (𝑚 · 𝐴))
2827ad2antrl 725 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹𝑚) = (𝑚 · 𝐴))
29 oveq1 7282 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → (𝑥 · 𝐴) = (𝑛 · 𝐴))
30 ovex 7308 . . . . . . . . . . . . . 14 (𝑛 · 𝐴) ∈ V
3129, 6, 30fvmpt 6875 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (𝐹𝑛) = (𝑛 · 𝐴))
3231ad2antll 726 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹𝑛) = (𝑛 · 𝐴))
3328, 32oveq12d 7293 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) = ((𝑚 · 𝐴)(+g𝐺)(𝑛 · 𝐴)))
3418, 24, 333eqtr4d 2788 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹‘(𝑚 + 𝑛)) = ((𝐹𝑚)(+g𝐺)(𝐹𝑛)))
35 fnfvelrn 6958 . . . . . . . . . . 11 ((𝐹 Fn ℤ ∧ (𝑚 + 𝑛) ∈ ℤ) → (𝐹‘(𝑚 + 𝑛)) ∈ ran 𝐹)
369, 19, 35syl2an 596 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐹‘(𝑚 + 𝑛)) ∈ ran 𝐹)
3734, 36eqeltrrd 2840 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹)
3837anassrs 468 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹)
3938ralrimiva 3103 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → ∀𝑛 ∈ ℤ ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹)
40 oveq2 7283 . . . . . . . . . . 11 (𝑣 = (𝐹𝑛) → ((𝐹𝑚)(+g𝐺)𝑣) = ((𝐹𝑚)(+g𝐺)(𝐹𝑛)))
4140eleq1d 2823 . . . . . . . . . 10 (𝑣 = (𝐹𝑛) → (((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ↔ ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹))
4241ralrn 6964 . . . . . . . . 9 (𝐹 Fn ℤ → (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑛 ∈ ℤ ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹))
439, 42syl 17 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑛 ∈ ℤ ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹))
4443adantr 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑛 ∈ ℤ ((𝐹𝑚)(+g𝐺)(𝐹𝑛)) ∈ ran 𝐹))
4539, 44mpbird 256 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → ∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹)
46 eqid 2738 . . . . . . . . . . 11 (invg𝐺) = (invg𝐺)
471, 2, 46mulgneg 18722 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝐴𝑋) → (-𝑚 · 𝐴) = ((invg𝐺)‘(𝑚 · 𝐴)))
48473expa 1117 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑚 ∈ ℤ) ∧ 𝐴𝑋) → (-𝑚 · 𝐴) = ((invg𝐺)‘(𝑚 · 𝐴)))
4948an32s 649 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (-𝑚 · 𝐴) = ((invg𝐺)‘(𝑚 · 𝐴)))
50 znegcl 12355 . . . . . . . . . 10 (𝑚 ∈ ℤ → -𝑚 ∈ ℤ)
5150adantl 482 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → -𝑚 ∈ ℤ)
52 oveq1 7282 . . . . . . . . . 10 (𝑥 = -𝑚 → (𝑥 · 𝐴) = (-𝑚 · 𝐴))
53 ovex 7308 . . . . . . . . . 10 (-𝑚 · 𝐴) ∈ V
5452, 6, 53fvmpt 6875 . . . . . . . . 9 (-𝑚 ∈ ℤ → (𝐹‘-𝑚) = (-𝑚 · 𝐴))
5551, 54syl 17 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹‘-𝑚) = (-𝑚 · 𝐴))
5627adantl 482 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹𝑚) = (𝑚 · 𝐴))
5756fveq2d 6778 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → ((invg𝐺)‘(𝐹𝑚)) = ((invg𝐺)‘(𝑚 · 𝐴)))
5849, 55, 573eqtr4d 2788 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹‘-𝑚) = ((invg𝐺)‘(𝐹𝑚)))
59 fnfvelrn 6958 . . . . . . . 8 ((𝐹 Fn ℤ ∧ -𝑚 ∈ ℤ) → (𝐹‘-𝑚) ∈ ran 𝐹)
609, 50, 59syl2an 596 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (𝐹‘-𝑚) ∈ ran 𝐹)
6158, 60eqeltrrd 2840 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹)
6245, 61jca 512 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑚 ∈ ℤ) → (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹))
6362ralrimiva 3103 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ∀𝑚 ∈ ℤ (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹))
64 oveq1 7282 . . . . . . . . 9 (𝑢 = (𝐹𝑚) → (𝑢(+g𝐺)𝑣) = ((𝐹𝑚)(+g𝐺)𝑣))
6564eleq1d 2823 . . . . . . . 8 (𝑢 = (𝐹𝑚) → ((𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ↔ ((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹))
6665ralbidv 3112 . . . . . . 7 (𝑢 = (𝐹𝑚) → (∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ↔ ∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹))
67 fveq2 6774 . . . . . . . 8 (𝑢 = (𝐹𝑚) → ((invg𝐺)‘𝑢) = ((invg𝐺)‘(𝐹𝑚)))
6867eleq1d 2823 . . . . . . 7 (𝑢 = (𝐹𝑚) → (((invg𝐺)‘𝑢) ∈ ran 𝐹 ↔ ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹))
6966, 68anbi12d 631 . . . . . 6 (𝑢 = (𝐹𝑚) → ((∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘𝑢) ∈ ran 𝐹) ↔ (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹)))
7069ralrn 6964 . . . . 5 (𝐹 Fn ℤ → (∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘𝑢) ∈ ran 𝐹) ↔ ∀𝑚 ∈ ℤ (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹)))
719, 70syl 17 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘𝑢) ∈ ran 𝐹) ↔ ∀𝑚 ∈ ℤ (∀𝑣 ∈ ran 𝐹((𝐹𝑚)(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘(𝐹𝑚)) ∈ ran 𝐹)))
7263, 71mpbird 256 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘𝑢) ∈ ran 𝐹))
731, 15, 46issubg2 18770 . . . 4 (𝐺 ∈ Grp → (ran 𝐹 ∈ (SubGrp‘𝐺) ↔ (ran 𝐹𝑋 ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘𝑢) ∈ ran 𝐹))))
7473adantr 481 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (ran 𝐹 ∈ (SubGrp‘𝐺) ↔ (ran 𝐹𝑋 ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑢 ∈ ran 𝐹(∀𝑣 ∈ ran 𝐹(𝑢(+g𝐺)𝑣) ∈ ran 𝐹 ∧ ((invg𝐺)‘𝑢) ∈ ran 𝐹))))
758, 13, 72, 74mpbir3and 1341 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ran 𝐹 ∈ (SubGrp‘𝐺))
76 oveq1 7282 . . . . . 6 (𝑥 = 1 → (𝑥 · 𝐴) = (1 · 𝐴))
77 ovex 7308 . . . . . 6 (1 · 𝐴) ∈ V
7876, 6, 77fvmpt 6875 . . . . 5 (1 ∈ ℤ → (𝐹‘1) = (1 · 𝐴))
7910, 78ax-mp 5 . . . 4 (𝐹‘1) = (1 · 𝐴)
801, 2mulg1 18711 . . . . 5 (𝐴𝑋 → (1 · 𝐴) = 𝐴)
8180adantl 482 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (1 · 𝐴) = 𝐴)
8279, 81eqtrid 2790 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹‘1) = 𝐴)
8382, 12eqeltrrd 2840 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐴 ∈ ran 𝐹)
8475, 83jca 512 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (ran 𝐹 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wss 3887  c0 4256  cmpt 5157  ran crn 5590   Fn wfn 6428  cfv 6433  (class class class)co 7275  1c1 10872   + caddc 10874  -cneg 11206  cz 12319  Basecbs 16912  +gcplusg 16962  Grpcgrp 18577  invgcminusg 18578  .gcmg 18700  SubGrpcsubg 18749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-mulg 18701  df-subg 18752
This theorem is referenced by:  cycsubg  18827  cycsubgcld  18828  oddvds2  19173  cycsubgcyg  19502
  Copyright terms: Public domain W3C validator