| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringrghm | Structured version Visualization version GIF version | ||
| Description: Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| ringlghm.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringlghm.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| ringrghm | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringlghm.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2729 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 3 | ringgrp 20147 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) |
| 5 | ringlghm.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 6 | 1, 5 | ringcl 20159 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) |
| 7 | 6 | 3expa 1118 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) |
| 8 | 7 | an32s 652 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) |
| 9 | 8 | fmpttd 7087 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)):𝐵⟶𝐵) |
| 10 | df-3an 1088 | . . . . 5 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵)) | |
| 11 | 1, 2, 5 | ringdir 20171 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑦(+g‘𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) |
| 12 | 10, 11 | sylan2br 595 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵)) → ((𝑦(+g‘𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) |
| 13 | 12 | anass1rs 655 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(+g‘𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) |
| 14 | 1, 2 | ringacl 20187 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
| 15 | 14 | 3expb 1120 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
| 16 | 15 | adantlr 715 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
| 17 | oveq1 7394 | . . . . 5 ⊢ (𝑥 = (𝑦(+g‘𝑅)𝑧) → (𝑥 · 𝑋) = ((𝑦(+g‘𝑅)𝑧) · 𝑋)) | |
| 18 | eqid 2729 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) = (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) | |
| 19 | ovex 7420 | . . . . 5 ⊢ ((𝑦(+g‘𝑅)𝑧) · 𝑋) ∈ V | |
| 20 | 17, 18, 19 | fvmpt 6968 | . . . 4 ⊢ ((𝑦(+g‘𝑅)𝑧) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g‘𝑅)𝑧)) = ((𝑦(+g‘𝑅)𝑧) · 𝑋)) |
| 21 | 16, 20 | syl 17 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g‘𝑅)𝑧)) = ((𝑦(+g‘𝑅)𝑧) · 𝑋)) |
| 22 | oveq1 7394 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋)) | |
| 23 | ovex 7420 | . . . . . 6 ⊢ (𝑦 · 𝑋) ∈ V | |
| 24 | 22, 18, 23 | fvmpt 6968 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑦) = (𝑦 · 𝑋)) |
| 25 | oveq1 7394 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑥 · 𝑋) = (𝑧 · 𝑋)) | |
| 26 | ovex 7420 | . . . . . 6 ⊢ (𝑧 · 𝑋) ∈ V | |
| 27 | 25, 18, 26 | fvmpt 6968 | . . . . 5 ⊢ (𝑧 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑧) = (𝑧 · 𝑋)) |
| 28 | 24, 27 | oveqan12d 7406 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑧)) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) |
| 29 | 28 | adantl 481 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑧)) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) |
| 30 | 13, 21, 29 | 3eqtr4d 2774 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g‘𝑅)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑧))) |
| 31 | 1, 1, 2, 2, 4, 4, 9, 30 | isghmd 19157 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 Grpcgrp 18865 GrpHom cghm 19144 Ringcrg 20142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-ghm 19145 df-mgp 20050 df-ring 20144 |
| This theorem is referenced by: gsummulc1OLD 20223 gsummulc1 20225 fidomndrnglem 20681 |
| Copyright terms: Public domain | W3C validator |