![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringrghm | Structured version Visualization version GIF version |
Description: Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
ringlghm.b | ⊢ 𝐵 = (Base‘𝑅) |
ringlghm.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
ringrghm | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringlghm.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2725 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | ringgrp 20190 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
4 | 3 | adantr 479 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) |
5 | ringlghm.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
6 | 1, 5 | ringcl 20202 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) |
7 | 6 | 3expa 1115 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) |
8 | 7 | an32s 650 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) |
9 | 8 | fmpttd 7124 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)):𝐵⟶𝐵) |
10 | df-3an 1086 | . . . . 5 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵)) | |
11 | 1, 2, 5 | ringdir 20213 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑦(+g‘𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) |
12 | 10, 11 | sylan2br 593 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵)) → ((𝑦(+g‘𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) |
13 | 12 | anass1rs 653 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(+g‘𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) |
14 | 1, 2 | ringacl 20226 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
15 | 14 | 3expb 1117 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
16 | 15 | adantlr 713 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
17 | oveq1 7426 | . . . . 5 ⊢ (𝑥 = (𝑦(+g‘𝑅)𝑧) → (𝑥 · 𝑋) = ((𝑦(+g‘𝑅)𝑧) · 𝑋)) | |
18 | eqid 2725 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) = (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) | |
19 | ovex 7452 | . . . . 5 ⊢ ((𝑦(+g‘𝑅)𝑧) · 𝑋) ∈ V | |
20 | 17, 18, 19 | fvmpt 7004 | . . . 4 ⊢ ((𝑦(+g‘𝑅)𝑧) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g‘𝑅)𝑧)) = ((𝑦(+g‘𝑅)𝑧) · 𝑋)) |
21 | 16, 20 | syl 17 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g‘𝑅)𝑧)) = ((𝑦(+g‘𝑅)𝑧) · 𝑋)) |
22 | oveq1 7426 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋)) | |
23 | ovex 7452 | . . . . . 6 ⊢ (𝑦 · 𝑋) ∈ V | |
24 | 22, 18, 23 | fvmpt 7004 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑦) = (𝑦 · 𝑋)) |
25 | oveq1 7426 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑥 · 𝑋) = (𝑧 · 𝑋)) | |
26 | ovex 7452 | . . . . . 6 ⊢ (𝑧 · 𝑋) ∈ V | |
27 | 25, 18, 26 | fvmpt 7004 | . . . . 5 ⊢ (𝑧 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑧) = (𝑧 · 𝑋)) |
28 | 24, 27 | oveqan12d 7438 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑧)) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) |
29 | 28 | adantl 480 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑧)) = ((𝑦 · 𝑋)(+g‘𝑅)(𝑧 · 𝑋))) |
30 | 13, 21, 29 | 3eqtr4d 2775 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g‘𝑅)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑧))) |
31 | 1, 1, 2, 2, 4, 4, 9, 30 | isghmd 19188 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5232 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 +gcplusg 17236 .rcmulr 17237 Grpcgrp 18898 GrpHom cghm 19175 Ringcrg 20185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18901 df-ghm 19176 df-mgp 20087 df-ring 20187 |
This theorem is referenced by: gsummulc1OLD 20262 gsummulc1 20264 fidomndrnglem 21277 |
Copyright terms: Public domain | W3C validator |