MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringrghm Structured version   Visualization version   GIF version

Theorem ringrghm 20256
Description: Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
ringlghm.b ๐ต = (Baseโ€˜๐‘…)
ringlghm.t ยท = (.rโ€˜๐‘…)
Assertion
Ref Expression
ringrghm ((๐‘… โˆˆ Ring โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘ฅ ยท ๐‘‹)) โˆˆ (๐‘… GrpHom ๐‘…))
Distinct variable groups:   ๐‘ฅ,๐ต   ๐‘ฅ,๐‘…   ๐‘ฅ, ยท   ๐‘ฅ,๐‘‹

Proof of Theorem ringrghm
Dummy variables ๐‘ฆ ๐‘ง are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringlghm.b . 2 ๐ต = (Baseโ€˜๐‘…)
2 eqid 2728 . 2 (+gโ€˜๐‘…) = (+gโ€˜๐‘…)
3 ringgrp 20185 . . 3 (๐‘… โˆˆ Ring โ†’ ๐‘… โˆˆ Grp)
43adantr 479 . 2 ((๐‘… โˆˆ Ring โˆง ๐‘‹ โˆˆ ๐ต) โ†’ ๐‘… โˆˆ Grp)
5 ringlghm.t . . . . . 6 ยท = (.rโ€˜๐‘…)
61, 5ringcl 20197 . . . . 5 ((๐‘… โˆˆ Ring โˆง ๐‘ฅ โˆˆ ๐ต โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘ฅ ยท ๐‘‹) โˆˆ ๐ต)
763expa 1115 . . . 4 (((๐‘… โˆˆ Ring โˆง ๐‘ฅ โˆˆ ๐ต) โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘ฅ ยท ๐‘‹) โˆˆ ๐ต)
87an32s 650 . . 3 (((๐‘… โˆˆ Ring โˆง ๐‘‹ โˆˆ ๐ต) โˆง ๐‘ฅ โˆˆ ๐ต) โ†’ (๐‘ฅ ยท ๐‘‹) โˆˆ ๐ต)
98fmpttd 7130 . 2 ((๐‘… โˆˆ Ring โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘ฅ ยท ๐‘‹)):๐ตโŸถ๐ต)
10 df-3an 1086 . . . . 5 ((๐‘ฆ โˆˆ ๐ต โˆง ๐‘ง โˆˆ ๐ต โˆง ๐‘‹ โˆˆ ๐ต) โ†” ((๐‘ฆ โˆˆ ๐ต โˆง ๐‘ง โˆˆ ๐ต) โˆง ๐‘‹ โˆˆ ๐ต))
111, 2, 5ringdir 20208 . . . . 5 ((๐‘… โˆˆ Ring โˆง (๐‘ฆ โˆˆ ๐ต โˆง ๐‘ง โˆˆ ๐ต โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ((๐‘ฆ(+gโ€˜๐‘…)๐‘ง) ยท ๐‘‹) = ((๐‘ฆ ยท ๐‘‹)(+gโ€˜๐‘…)(๐‘ง ยท ๐‘‹)))
1210, 11sylan2br 593 . . . 4 ((๐‘… โˆˆ Ring โˆง ((๐‘ฆ โˆˆ ๐ต โˆง ๐‘ง โˆˆ ๐ต) โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ((๐‘ฆ(+gโ€˜๐‘…)๐‘ง) ยท ๐‘‹) = ((๐‘ฆ ยท ๐‘‹)(+gโ€˜๐‘…)(๐‘ง ยท ๐‘‹)))
1312anass1rs 653 . . 3 (((๐‘… โˆˆ Ring โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ฆ โˆˆ ๐ต โˆง ๐‘ง โˆˆ ๐ต)) โ†’ ((๐‘ฆ(+gโ€˜๐‘…)๐‘ง) ยท ๐‘‹) = ((๐‘ฆ ยท ๐‘‹)(+gโ€˜๐‘…)(๐‘ง ยท ๐‘‹)))
141, 2ringacl 20221 . . . . . 6 ((๐‘… โˆˆ Ring โˆง ๐‘ฆ โˆˆ ๐ต โˆง ๐‘ง โˆˆ ๐ต) โ†’ (๐‘ฆ(+gโ€˜๐‘…)๐‘ง) โˆˆ ๐ต)
15143expb 1117 . . . . 5 ((๐‘… โˆˆ Ring โˆง (๐‘ฆ โˆˆ ๐ต โˆง ๐‘ง โˆˆ ๐ต)) โ†’ (๐‘ฆ(+gโ€˜๐‘…)๐‘ง) โˆˆ ๐ต)
1615adantlr 713 . . . 4 (((๐‘… โˆˆ Ring โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ฆ โˆˆ ๐ต โˆง ๐‘ง โˆˆ ๐ต)) โ†’ (๐‘ฆ(+gโ€˜๐‘…)๐‘ง) โˆˆ ๐ต)
17 oveq1 7433 . . . . 5 (๐‘ฅ = (๐‘ฆ(+gโ€˜๐‘…)๐‘ง) โ†’ (๐‘ฅ ยท ๐‘‹) = ((๐‘ฆ(+gโ€˜๐‘…)๐‘ง) ยท ๐‘‹))
18 eqid 2728 . . . . 5 (๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘ฅ ยท ๐‘‹)) = (๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘ฅ ยท ๐‘‹))
19 ovex 7459 . . . . 5 ((๐‘ฆ(+gโ€˜๐‘…)๐‘ง) ยท ๐‘‹) โˆˆ V
2017, 18, 19fvmpt 7010 . . . 4 ((๐‘ฆ(+gโ€˜๐‘…)๐‘ง) โˆˆ ๐ต โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘ฅ ยท ๐‘‹))โ€˜(๐‘ฆ(+gโ€˜๐‘…)๐‘ง)) = ((๐‘ฆ(+gโ€˜๐‘…)๐‘ง) ยท ๐‘‹))
2116, 20syl 17 . . 3 (((๐‘… โˆˆ Ring โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ฆ โˆˆ ๐ต โˆง ๐‘ง โˆˆ ๐ต)) โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘ฅ ยท ๐‘‹))โ€˜(๐‘ฆ(+gโ€˜๐‘…)๐‘ง)) = ((๐‘ฆ(+gโ€˜๐‘…)๐‘ง) ยท ๐‘‹))
22 oveq1 7433 . . . . . 6 (๐‘ฅ = ๐‘ฆ โ†’ (๐‘ฅ ยท ๐‘‹) = (๐‘ฆ ยท ๐‘‹))
23 ovex 7459 . . . . . 6 (๐‘ฆ ยท ๐‘‹) โˆˆ V
2422, 18, 23fvmpt 7010 . . . . 5 (๐‘ฆ โˆˆ ๐ต โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘ฅ ยท ๐‘‹))โ€˜๐‘ฆ) = (๐‘ฆ ยท ๐‘‹))
25 oveq1 7433 . . . . . 6 (๐‘ฅ = ๐‘ง โ†’ (๐‘ฅ ยท ๐‘‹) = (๐‘ง ยท ๐‘‹))
26 ovex 7459 . . . . . 6 (๐‘ง ยท ๐‘‹) โˆˆ V
2725, 18, 26fvmpt 7010 . . . . 5 (๐‘ง โˆˆ ๐ต โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘ฅ ยท ๐‘‹))โ€˜๐‘ง) = (๐‘ง ยท ๐‘‹))
2824, 27oveqan12d 7445 . . . 4 ((๐‘ฆ โˆˆ ๐ต โˆง ๐‘ง โˆˆ ๐ต) โ†’ (((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘ฅ ยท ๐‘‹))โ€˜๐‘ฆ)(+gโ€˜๐‘…)((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘ฅ ยท ๐‘‹))โ€˜๐‘ง)) = ((๐‘ฆ ยท ๐‘‹)(+gโ€˜๐‘…)(๐‘ง ยท ๐‘‹)))
2928adantl 480 . . 3 (((๐‘… โˆˆ Ring โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ฆ โˆˆ ๐ต โˆง ๐‘ง โˆˆ ๐ต)) โ†’ (((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘ฅ ยท ๐‘‹))โ€˜๐‘ฆ)(+gโ€˜๐‘…)((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘ฅ ยท ๐‘‹))โ€˜๐‘ง)) = ((๐‘ฆ ยท ๐‘‹)(+gโ€˜๐‘…)(๐‘ง ยท ๐‘‹)))
3013, 21, 293eqtr4d 2778 . 2 (((๐‘… โˆˆ Ring โˆง ๐‘‹ โˆˆ ๐ต) โˆง (๐‘ฆ โˆˆ ๐ต โˆง ๐‘ง โˆˆ ๐ต)) โ†’ ((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘ฅ ยท ๐‘‹))โ€˜(๐‘ฆ(+gโ€˜๐‘…)๐‘ง)) = (((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘ฅ ยท ๐‘‹))โ€˜๐‘ฆ)(+gโ€˜๐‘…)((๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘ฅ ยท ๐‘‹))โ€˜๐‘ง)))
311, 1, 2, 2, 4, 4, 9, 30isghmd 19186 1 ((๐‘… โˆˆ Ring โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘ฅ โˆˆ ๐ต โ†ฆ (๐‘ฅ ยท ๐‘‹)) โˆˆ (๐‘… GrpHom ๐‘…))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 394   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098   โ†ฆ cmpt 5235  โ€˜cfv 6553  (class class class)co 7426  Basecbs 17187  +gcplusg 17240  .rcmulr 17241  Grpcgrp 18897   GrpHom cghm 19174  Ringcrg 20180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-grp 18900  df-ghm 19175  df-mgp 20082  df-ring 20182
This theorem is referenced by:  gsummulc1OLD  20257  gsummulc1  20259  fidomndrnglem  21267
  Copyright terms: Public domain W3C validator