MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringrghm Structured version   Visualization version   GIF version

Theorem ringrghm 18966
Description: Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
ringlghm.b 𝐵 = (Base‘𝑅)
ringlghm.t · = (.r𝑅)
Assertion
Ref Expression
ringrghm ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥, ·   𝑥,𝑋

Proof of Theorem ringrghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringlghm.b . 2 𝐵 = (Base‘𝑅)
2 eqid 2825 . 2 (+g𝑅) = (+g𝑅)
3 ringgrp 18913 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
43adantr 474 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
5 ringlghm.t . . . . . 6 · = (.r𝑅)
61, 5ringcl 18922 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑋𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
763expa 1151 . . . 4 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑋𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
87an32s 642 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
98fmpttd 6639 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵)
10 df-3an 1113 . . . . 5 ((𝑦𝐵𝑧𝐵𝑋𝐵) ↔ ((𝑦𝐵𝑧𝐵) ∧ 𝑋𝐵))
111, 2, 5ringdir 18928 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑦𝐵𝑧𝐵𝑋𝐵)) → ((𝑦(+g𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
1210, 11sylan2br 588 . . . 4 ((𝑅 ∈ Ring ∧ ((𝑦𝐵𝑧𝐵) ∧ 𝑋𝐵)) → ((𝑦(+g𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
1312anass1rs 645 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
141, 2ringacl 18939 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
15143expb 1153 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
1615adantlr 706 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
17 oveq1 6917 . . . . 5 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝑥 · 𝑋) = ((𝑦(+g𝑅)𝑧) · 𝑋))
18 eqid 2825 . . . . 5 (𝑥𝐵 ↦ (𝑥 · 𝑋)) = (𝑥𝐵 ↦ (𝑥 · 𝑋))
19 ovex 6942 . . . . 5 ((𝑦(+g𝑅)𝑧) · 𝑋) ∈ V
2017, 18, 19fvmpt 6533 . . . 4 ((𝑦(+g𝑅)𝑧) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g𝑅)𝑧)) = ((𝑦(+g𝑅)𝑧) · 𝑋))
2116, 20syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g𝑅)𝑧)) = ((𝑦(+g𝑅)𝑧) · 𝑋))
22 oveq1 6917 . . . . . 6 (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋))
23 ovex 6942 . . . . . 6 (𝑦 · 𝑋) ∈ V
2422, 18, 23fvmpt 6533 . . . . 5 (𝑦𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑦) = (𝑦 · 𝑋))
25 oveq1 6917 . . . . . 6 (𝑥 = 𝑧 → (𝑥 · 𝑋) = (𝑧 · 𝑋))
26 ovex 6942 . . . . . 6 (𝑧 · 𝑋) ∈ V
2725, 18, 26fvmpt 6533 . . . . 5 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑧) = (𝑧 · 𝑋))
2824, 27oveqan12d 6929 . . . 4 ((𝑦𝐵𝑧𝐵) → (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑧)) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
2928adantl 475 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑧)) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
3013, 21, 293eqtr4d 2871 . 2 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g𝑅)𝑧)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑧)))
311, 1, 2, 2, 4, 4, 9, 30isghmd 18027 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111   = wceq 1656  wcel 2164  cmpt 4954  cfv 6127  (class class class)co 6910  Basecbs 16229  +gcplusg 16312  .rcmulr 16313  Grpcgrp 17783   GrpHom cghm 18015  Ringcrg 18908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-plusg 16325  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786  df-ghm 18016  df-mgp 18851  df-ring 18910
This theorem is referenced by:  gsummulc1  18967  fidomndrnglem  19674
  Copyright terms: Public domain W3C validator