Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringrghm Structured version   Visualization version   GIF version

Theorem ringrghm 19344
 Description: Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
ringlghm.b 𝐵 = (Base‘𝑅)
ringlghm.t · = (.r𝑅)
Assertion
Ref Expression
ringrghm ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥, ·   𝑥,𝑋

Proof of Theorem ringrghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringlghm.b . 2 𝐵 = (Base‘𝑅)
2 eqid 2824 . 2 (+g𝑅) = (+g𝑅)
3 ringgrp 19291 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
43adantr 484 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
5 ringlghm.t . . . . . 6 · = (.r𝑅)
61, 5ringcl 19300 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑋𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
763expa 1115 . . . 4 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ 𝑋𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
87an32s 651 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑥 · 𝑋) ∈ 𝐵)
98fmpttd 6860 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)):𝐵𝐵)
10 df-3an 1086 . . . . 5 ((𝑦𝐵𝑧𝐵𝑋𝐵) ↔ ((𝑦𝐵𝑧𝐵) ∧ 𝑋𝐵))
111, 2, 5ringdir 19306 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑦𝐵𝑧𝐵𝑋𝐵)) → ((𝑦(+g𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
1210, 11sylan2br 597 . . . 4 ((𝑅 ∈ Ring ∧ ((𝑦𝐵𝑧𝐵) ∧ 𝑋𝐵)) → ((𝑦(+g𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
1312anass1rs 654 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑦(+g𝑅)𝑧) · 𝑋) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
141, 2ringacl 19317 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
15143expb 1117 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
1615adantlr 714 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
17 oveq1 7145 . . . . 5 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝑥 · 𝑋) = ((𝑦(+g𝑅)𝑧) · 𝑋))
18 eqid 2824 . . . . 5 (𝑥𝐵 ↦ (𝑥 · 𝑋)) = (𝑥𝐵 ↦ (𝑥 · 𝑋))
19 ovex 7171 . . . . 5 ((𝑦(+g𝑅)𝑧) · 𝑋) ∈ V
2017, 18, 19fvmpt 6749 . . . 4 ((𝑦(+g𝑅)𝑧) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g𝑅)𝑧)) = ((𝑦(+g𝑅)𝑧) · 𝑋))
2116, 20syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g𝑅)𝑧)) = ((𝑦(+g𝑅)𝑧) · 𝑋))
22 oveq1 7145 . . . . . 6 (𝑥 = 𝑦 → (𝑥 · 𝑋) = (𝑦 · 𝑋))
23 ovex 7171 . . . . . 6 (𝑦 · 𝑋) ∈ V
2422, 18, 23fvmpt 6749 . . . . 5 (𝑦𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑦) = (𝑦 · 𝑋))
25 oveq1 7145 . . . . . 6 (𝑥 = 𝑧 → (𝑥 · 𝑋) = (𝑧 · 𝑋))
26 ovex 7171 . . . . . 6 (𝑧 · 𝑋) ∈ V
2725, 18, 26fvmpt 6749 . . . . 5 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑧) = (𝑧 · 𝑋))
2824, 27oveqan12d 7157 . . . 4 ((𝑦𝐵𝑧𝐵) → (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑧)) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
2928adantl 485 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑧)) = ((𝑦 · 𝑋)(+g𝑅)(𝑧 · 𝑋)))
3013, 21, 293eqtr4d 2869 . 2 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑥 · 𝑋))‘(𝑦(+g𝑅)𝑧)) = (((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑥 · 𝑋))‘𝑧)))
311, 1, 2, 2, 4, 4, 9, 30isghmd 18356 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ↦ cmpt 5127  ‘cfv 6336  (class class class)co 7138  Basecbs 16472  +gcplusg 16554  .rcmulr 16555  Grpcgrp 18092   GrpHom cghm 18344  Ringcrg 19286 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-plusg 16567  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-grp 18095  df-ghm 18345  df-mgp 19229  df-ring 19288 This theorem is referenced by:  gsummulc1  19345  fidomndrnglem  20065
 Copyright terms: Public domain W3C validator