MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbflimlem Structured version   Visualization version   GIF version

Theorem mbflimlem 24536
Description: The pointwise limit of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbflim.1 𝑍 = (ℤ𝑀)
mbflim.2 (𝜑𝑀 ∈ ℤ)
mbflim.4 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ⇝ 𝐶)
mbflim.5 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbflimlem.6 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
mbflimlem (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝐴   𝜑,𝑛,𝑥   𝑛,𝑍,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐶(𝑥,𝑛)   𝑀(𝑥,𝑛)

Proof of Theorem mbflimlem
Dummy variables 𝑗 𝑘 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbflim.1 . . . . 5 𝑍 = (ℤ𝑀)
2 mbflimlem.6 . . . . . . 7 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
32anass1rs 655 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
43fmpttd 6921 . . . . 5 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ)
5 mbflim.2 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
65adantr 484 . . . . . 6 ((𝜑𝑥𝐴) → 𝑀 ∈ ℤ)
7 mbflim.4 . . . . . . 7 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ⇝ 𝐶)
8 climrel 15036 . . . . . . . 8 Rel ⇝
98releldmi 5806 . . . . . . 7 ((𝑛𝑍𝐵) ⇝ 𝐶 → (𝑛𝑍𝐵) ∈ dom ⇝ )
107, 9syl 17 . . . . . 6 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ∈ dom ⇝ )
111climcau 15217 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑛𝑍𝐵) ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ+𝑘𝑍𝑗 ∈ (ℤ𝑘)(abs‘(((𝑛𝑍𝐵)‘𝑗) − ((𝑛𝑍𝐵)‘𝑘))) < 𝑦)
126, 10, 11syl2anc 587 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑦 ∈ ℝ+𝑘𝑍𝑗 ∈ (ℤ𝑘)(abs‘(((𝑛𝑍𝐵)‘𝑗) − ((𝑛𝑍𝐵)‘𝑘))) < 𝑦)
131, 4, 12caurcvg 15223 . . . 4 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) ⇝ (lim sup‘(𝑛𝑍𝐵)))
14 climuni 15096 . . . 4 (((𝑛𝑍𝐵) ⇝ (lim sup‘(𝑛𝑍𝐵)) ∧ (𝑛𝑍𝐵) ⇝ 𝐶) → (lim sup‘(𝑛𝑍𝐵)) = 𝐶)
1513, 7, 14syl2anc 587 . . 3 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) = 𝐶)
1615mpteq2dva 5139 . 2 (𝜑 → (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵))) = (𝑥𝐴𝐶))
17 eqid 2734 . . 3 (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵))) = (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵)))
18 eqid 2734 . . 3 (𝑚 ∈ ℝ ↦ sup((((𝑛𝑍𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑚 ∈ ℝ ↦ sup((((𝑛𝑍𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < ))
194ffvelrnda 6893 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘𝑍) → ((𝑛𝑍𝐵)‘𝑘) ∈ ℝ)
201, 6, 13, 19climrecl 15127 . . 3 ((𝜑𝑥𝐴) → (lim sup‘(𝑛𝑍𝐵)) ∈ ℝ)
21 mbflim.5 . . 3 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
221, 17, 18, 5, 20, 21, 2mbflimsup 24535 . 2 (𝜑 → (𝑥𝐴 ↦ (lim sup‘(𝑛𝑍𝐵))) ∈ MblFn)
2316, 22eqeltrrd 2835 1 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3054  wrex 3055  cin 3856   class class class wbr 5043  cmpt 5124  dom cdm 5540  cima 5543  cfv 6369  (class class class)co 7202  supcsup 9045  cr 10711  +∞cpnf 10847  *cxr 10849   < clt 10850  cmin 11045  cz 12159  cuz 12421  +crp 12569  [,)cico 12920  abscabs 14780  lim supclsp 15014  cli 15028  MblFncmbf 24483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cc 10032  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-disj 5009  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-oadd 8195  df-omul 8196  df-er 8380  df-map 8499  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-inf 9048  df-oi 9115  df-dju 9500  df-card 9538  df-acn 9541  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-q 12528  df-rp 12570  df-xadd 12688  df-ioo 12922  df-ioc 12923  df-ico 12924  df-icc 12925  df-fz 13079  df-fzo 13222  df-fl 13350  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-limsup 15015  df-clim 15032  df-rlim 15033  df-sum 15233  df-xmet 20328  df-met 20329  df-ovol 24333  df-vol 24334  df-mbf 24488
This theorem is referenced by:  mbflim  24537
  Copyright terms: Public domain W3C validator