Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mbflimlem | Structured version Visualization version GIF version |
Description: The pointwise limit of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) |
Ref | Expression |
---|---|
mbflim.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
mbflim.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
mbflim.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) |
mbflim.5 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
mbflimlem.6 | ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
mbflimlem | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbflim.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | mbflimlem.6 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) | |
3 | 2 | anass1rs 651 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → 𝐵 ∈ ℝ) |
4 | 3 | fmpttd 6971 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ) |
5 | mbflim.2 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ∈ ℤ) |
7 | mbflim.4 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) | |
8 | climrel 15129 | . . . . . . . 8 ⊢ Rel ⇝ | |
9 | 8 | releldmi 5846 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶 → (𝑛 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) |
10 | 7, 9 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) |
11 | 1 | climcau 15310 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ (𝑛 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ+ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑗) − ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘))) < 𝑦) |
12 | 6, 10, 11 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ ℝ+ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑗) − ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘))) < 𝑦) |
13 | 1, 4, 12 | caurcvg 15316 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) |
14 | climuni 15189 | . . . 4 ⊢ (((𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ∧ (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) = 𝐶) | |
15 | 13, 7, 14 | syl2anc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) = 𝐶) |
16 | 15 | mpteq2dva 5170 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
17 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) = (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) | |
18 | eqid 2738 | . . 3 ⊢ (𝑚 ∈ ℝ ↦ sup((((𝑛 ∈ 𝑍 ↦ 𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑚 ∈ ℝ ↦ sup((((𝑛 ∈ 𝑍 ↦ 𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
19 | 4 | ffvelrnda 6943 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ℝ) |
20 | 1, 6, 13, 19 | climrecl 15220 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) |
21 | mbflim.5 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
22 | 1, 17, 18, 5, 20, 21, 2 | mbflimsup 24735 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) ∈ MblFn) |
23 | 16, 22 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ∩ cin 3882 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 “ cima 5583 ‘cfv 6418 (class class class)co 7255 supcsup 9129 ℝcr 10801 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 − cmin 11135 ℤcz 12249 ℤ≥cuz 12511 ℝ+crp 12659 [,)cico 13010 abscabs 14873 lim supclsp 15107 ⇝ cli 15121 MblFncmbf 24683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xadd 12778 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-xmet 20503 df-met 20504 df-ovol 24533 df-vol 24534 df-mbf 24688 |
This theorem is referenced by: mbflim 24737 |
Copyright terms: Public domain | W3C validator |