| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbflimlem | Structured version Visualization version GIF version | ||
| Description: The pointwise limit of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| Ref | Expression |
|---|---|
| mbflim.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| mbflim.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| mbflim.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) |
| mbflim.5 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| mbflimlem.6 | ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| mbflimlem | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbflim.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | mbflimlem.6 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) | |
| 3 | 2 | anass1rs 655 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → 𝐵 ∈ ℝ) |
| 4 | 3 | fmpttd 7115 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ) |
| 5 | mbflim.2 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ∈ ℤ) |
| 7 | mbflim.4 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) | |
| 8 | climrel 15510 | . . . . . . . 8 ⊢ Rel ⇝ | |
| 9 | 8 | releldmi 5939 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶 → (𝑛 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) |
| 10 | 7, 9 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) |
| 11 | 1 | climcau 15689 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ (𝑛 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ+ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑗) − ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘))) < 𝑦) |
| 12 | 6, 10, 11 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ ℝ+ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑗) − ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘))) < 𝑦) |
| 13 | 1, 4, 12 | caurcvg 15695 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) |
| 14 | climuni 15570 | . . . 4 ⊢ (((𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ∧ (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) = 𝐶) | |
| 15 | 13, 7, 14 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) = 𝐶) |
| 16 | 15 | mpteq2dva 5222 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| 17 | eqid 2734 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) = (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) | |
| 18 | eqid 2734 | . . 3 ⊢ (𝑚 ∈ ℝ ↦ sup((((𝑛 ∈ 𝑍 ↦ 𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑚 ∈ ℝ ↦ sup((((𝑛 ∈ 𝑍 ↦ 𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
| 19 | 4 | ffvelcdmda 7084 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ℝ) |
| 20 | 1, 6, 13, 19 | climrecl 15601 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) |
| 21 | mbflim.5 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
| 22 | 1, 17, 18, 5, 20, 21, 2 | mbflimsup 25637 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) ∈ MblFn) |
| 23 | 16, 22 | eqeltrrd 2834 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ∩ cin 3930 class class class wbr 5123 ↦ cmpt 5205 dom cdm 5665 “ cima 5668 ‘cfv 6541 (class class class)co 7413 supcsup 9462 ℝcr 11136 +∞cpnf 11274 ℝ*cxr 11276 < clt 11277 − cmin 11474 ℤcz 12596 ℤ≥cuz 12860 ℝ+crp 13016 [,)cico 13371 abscabs 15255 lim supclsp 15488 ⇝ cli 15502 MblFncmbf 25585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cc 10457 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-disj 5091 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-omul 8493 df-er 8727 df-map 8850 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-oi 9532 df-dju 9923 df-card 9961 df-acn 9964 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-q 12973 df-rp 13017 df-xadd 13137 df-ioo 13373 df-ioc 13374 df-ico 13375 df-icc 13376 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14352 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-limsup 15489 df-clim 15506 df-rlim 15507 df-sum 15705 df-xmet 21319 df-met 21320 df-ovol 25435 df-vol 25436 df-mbf 25590 |
| This theorem is referenced by: mbflim 25639 |
| Copyright terms: Public domain | W3C validator |