![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbflimlem | Structured version Visualization version GIF version |
Description: The pointwise limit of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) |
Ref | Expression |
---|---|
mbflim.1 | β’ π = (β€β₯βπ) |
mbflim.2 | β’ (π β π β β€) |
mbflim.4 | β’ ((π β§ π₯ β π΄) β (π β π β¦ π΅) β πΆ) |
mbflim.5 | β’ ((π β§ π β π) β (π₯ β π΄ β¦ π΅) β MblFn) |
mbflimlem.6 | β’ ((π β§ (π β π β§ π₯ β π΄)) β π΅ β β) |
Ref | Expression |
---|---|
mbflimlem | β’ (π β (π₯ β π΄ β¦ πΆ) β MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbflim.1 | . . . . 5 β’ π = (β€β₯βπ) | |
2 | mbflimlem.6 | . . . . . . 7 β’ ((π β§ (π β π β§ π₯ β π΄)) β π΅ β β) | |
3 | 2 | anass1rs 653 | . . . . . 6 β’ (((π β§ π₯ β π΄) β§ π β π) β π΅ β β) |
4 | 3 | fmpttd 7111 | . . . . 5 β’ ((π β§ π₯ β π΄) β (π β π β¦ π΅):πβΆβ) |
5 | mbflim.2 | . . . . . . 7 β’ (π β π β β€) | |
6 | 5 | adantr 481 | . . . . . 6 β’ ((π β§ π₯ β π΄) β π β β€) |
7 | mbflim.4 | . . . . . . 7 β’ ((π β§ π₯ β π΄) β (π β π β¦ π΅) β πΆ) | |
8 | climrel 15432 | . . . . . . . 8 β’ Rel β | |
9 | 8 | releldmi 5945 | . . . . . . 7 β’ ((π β π β¦ π΅) β πΆ β (π β π β¦ π΅) β dom β ) |
10 | 7, 9 | syl 17 | . . . . . 6 β’ ((π β§ π₯ β π΄) β (π β π β¦ π΅) β dom β ) |
11 | 1 | climcau 15613 | . . . . . 6 β’ ((π β β€ β§ (π β π β¦ π΅) β dom β ) β βπ¦ β β+ βπ β π βπ β (β€β₯βπ)(absβ(((π β π β¦ π΅)βπ) β ((π β π β¦ π΅)βπ))) < π¦) |
12 | 6, 10, 11 | syl2anc 584 | . . . . 5 β’ ((π β§ π₯ β π΄) β βπ¦ β β+ βπ β π βπ β (β€β₯βπ)(absβ(((π β π β¦ π΅)βπ) β ((π β π β¦ π΅)βπ))) < π¦) |
13 | 1, 4, 12 | caurcvg 15619 | . . . 4 β’ ((π β§ π₯ β π΄) β (π β π β¦ π΅) β (lim supβ(π β π β¦ π΅))) |
14 | climuni 15492 | . . . 4 β’ (((π β π β¦ π΅) β (lim supβ(π β π β¦ π΅)) β§ (π β π β¦ π΅) β πΆ) β (lim supβ(π β π β¦ π΅)) = πΆ) | |
15 | 13, 7, 14 | syl2anc 584 | . . 3 β’ ((π β§ π₯ β π΄) β (lim supβ(π β π β¦ π΅)) = πΆ) |
16 | 15 | mpteq2dva 5247 | . 2 β’ (π β (π₯ β π΄ β¦ (lim supβ(π β π β¦ π΅))) = (π₯ β π΄ β¦ πΆ)) |
17 | eqid 2732 | . . 3 β’ (π₯ β π΄ β¦ (lim supβ(π β π β¦ π΅))) = (π₯ β π΄ β¦ (lim supβ(π β π β¦ π΅))) | |
18 | eqid 2732 | . . 3 β’ (π β β β¦ sup((((π β π β¦ π΅) β (π[,)+β)) β© β*), β*, < )) = (π β β β¦ sup((((π β π β¦ π΅) β (π[,)+β)) β© β*), β*, < )) | |
19 | 4 | ffvelcdmda 7083 | . . . 4 β’ (((π β§ π₯ β π΄) β§ π β π) β ((π β π β¦ π΅)βπ) β β) |
20 | 1, 6, 13, 19 | climrecl 15523 | . . 3 β’ ((π β§ π₯ β π΄) β (lim supβ(π β π β¦ π΅)) β β) |
21 | mbflim.5 | . . 3 β’ ((π β§ π β π) β (π₯ β π΄ β¦ π΅) β MblFn) | |
22 | 1, 17, 18, 5, 20, 21, 2 | mbflimsup 25174 | . 2 β’ (π β (π₯ β π΄ β¦ (lim supβ(π β π β¦ π΅))) β MblFn) |
23 | 16, 22 | eqeltrrd 2834 | 1 β’ (π β (π₯ β π΄ β¦ πΆ) β MblFn) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 βwrex 3070 β© cin 3946 class class class wbr 5147 β¦ cmpt 5230 dom cdm 5675 β cima 5678 βcfv 6540 (class class class)co 7405 supcsup 9431 βcr 11105 +βcpnf 11241 β*cxr 11243 < clt 11244 β cmin 11440 β€cz 12554 β€β₯cuz 12818 β+crp 12970 [,)cico 13322 abscabs 15177 lim supclsp 15410 β cli 15424 MblFncmbf 25122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cc 10426 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-disj 5113 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-omul 8467 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-dju 9892 df-card 9930 df-acn 9933 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-xadd 13089 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-xmet 20929 df-met 20930 df-ovol 24972 df-vol 24973 df-mbf 25127 |
This theorem is referenced by: mbflim 25176 |
Copyright terms: Public domain | W3C validator |