![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbflimlem | Structured version Visualization version GIF version |
Description: The pointwise limit of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) |
Ref | Expression |
---|---|
mbflim.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
mbflim.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
mbflim.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) |
mbflim.5 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
mbflimlem.6 | ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
mbflimlem | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbflim.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | mbflimlem.6 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) | |
3 | 2 | anass1rs 655 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → 𝐵 ∈ ℝ) |
4 | 3 | fmpttd 7142 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ) |
5 | mbflim.2 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ∈ ℤ) |
7 | mbflim.4 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) | |
8 | climrel 15534 | . . . . . . . 8 ⊢ Rel ⇝ | |
9 | 8 | releldmi 5966 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶 → (𝑛 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) |
10 | 7, 9 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) |
11 | 1 | climcau 15713 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ (𝑛 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ+ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑗) − ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘))) < 𝑦) |
12 | 6, 10, 11 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ ℝ+ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑗) − ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘))) < 𝑦) |
13 | 1, 4, 12 | caurcvg 15719 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) |
14 | climuni 15594 | . . . 4 ⊢ (((𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ∧ (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) = 𝐶) | |
15 | 13, 7, 14 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) = 𝐶) |
16 | 15 | mpteq2dva 5251 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
17 | eqid 2737 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) = (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) | |
18 | eqid 2737 | . . 3 ⊢ (𝑚 ∈ ℝ ↦ sup((((𝑛 ∈ 𝑍 ↦ 𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑚 ∈ ℝ ↦ sup((((𝑛 ∈ 𝑍 ↦ 𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
19 | 4 | ffvelcdmda 7111 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ℝ) |
20 | 1, 6, 13, 19 | climrecl 15625 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) |
21 | mbflim.5 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
22 | 1, 17, 18, 5, 20, 21, 2 | mbflimsup 25726 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) ∈ MblFn) |
23 | 16, 22 | eqeltrrd 2842 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 ∩ cin 3965 class class class wbr 5151 ↦ cmpt 5234 dom cdm 5693 “ cima 5696 ‘cfv 6569 (class class class)co 7438 supcsup 9487 ℝcr 11161 +∞cpnf 11299 ℝ*cxr 11301 < clt 11302 − cmin 11499 ℤcz 12620 ℤ≥cuz 12885 ℝ+crp 13041 [,)cico 13395 abscabs 15279 lim supclsp 15512 ⇝ cli 15526 MblFncmbf 25674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-inf2 9688 ax-cc 10482 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-disj 5119 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-oadd 8518 df-omul 8519 df-er 8753 df-map 8876 df-pm 8877 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-sup 9489 df-inf 9490 df-oi 9557 df-dju 9948 df-card 9986 df-acn 9989 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-n0 12534 df-z 12621 df-uz 12886 df-q 12998 df-rp 13042 df-xadd 13162 df-ioo 13397 df-ioc 13398 df-ico 13399 df-icc 13400 df-fz 13554 df-fzo 13701 df-fl 13838 df-seq 14049 df-exp 14109 df-hash 14376 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-limsup 15513 df-clim 15530 df-rlim 15531 df-sum 15729 df-xmet 21384 df-met 21385 df-ovol 25524 df-vol 25525 df-mbf 25679 |
This theorem is referenced by: mbflim 25728 |
Copyright terms: Public domain | W3C validator |