| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbflimlem | Structured version Visualization version GIF version | ||
| Description: The pointwise limit of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.) |
| Ref | Expression |
|---|---|
| mbflim.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| mbflim.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| mbflim.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) |
| mbflim.5 | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| mbflimlem.6 | ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| mbflimlem | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbflim.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | mbflimlem.6 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴)) → 𝐵 ∈ ℝ) | |
| 3 | 2 | anass1rs 655 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) → 𝐵 ∈ ℝ) |
| 4 | 3 | fmpttd 7089 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵):𝑍⟶ℝ) |
| 5 | mbflim.2 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑀 ∈ ℤ) |
| 7 | mbflim.4 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) | |
| 8 | climrel 15464 | . . . . . . . 8 ⊢ Rel ⇝ | |
| 9 | 8 | releldmi 5914 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶 → (𝑛 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) |
| 10 | 7, 9 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) |
| 11 | 1 | climcau 15643 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ (𝑛 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ+ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑗) − ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘))) < 𝑦) |
| 12 | 6, 10, 11 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ ℝ+ ∃𝑘 ∈ 𝑍 ∀𝑗 ∈ (ℤ≥‘𝑘)(abs‘(((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑗) − ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘))) < 𝑦) |
| 13 | 1, 4, 12 | caurcvg 15649 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) |
| 14 | climuni 15524 | . . . 4 ⊢ (((𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ∧ (𝑛 ∈ 𝑍 ↦ 𝐵) ⇝ 𝐶) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) = 𝐶) | |
| 15 | 13, 7, 14 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) = 𝐶) |
| 16 | 15 | mpteq2dva 5202 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
| 17 | eqid 2730 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) = (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) | |
| 18 | eqid 2730 | . . 3 ⊢ (𝑚 ∈ ℝ ↦ sup((((𝑛 ∈ 𝑍 ↦ 𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < )) = (𝑚 ∈ ℝ ↦ sup((((𝑛 ∈ 𝑍 ↦ 𝐵) “ (𝑚[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
| 19 | 4 | ffvelcdmda 7058 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ 𝐵)‘𝑘) ∈ ℝ) |
| 20 | 1, 6, 13, 19 | climrecl 15555 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ) |
| 21 | mbflim.5 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
| 22 | 1, 17, 18, 5, 20, 21, 2 | mbflimsup 25573 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (lim sup‘(𝑛 ∈ 𝑍 ↦ 𝐵))) ∈ MblFn) |
| 23 | 16, 22 | eqeltrrd 2830 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ∩ cin 3915 class class class wbr 5109 ↦ cmpt 5190 dom cdm 5640 “ cima 5643 ‘cfv 6513 (class class class)co 7389 supcsup 9397 ℝcr 11073 +∞cpnf 11211 ℝ*cxr 11213 < clt 11214 − cmin 11411 ℤcz 12535 ℤ≥cuz 12799 ℝ+crp 12957 [,)cico 13314 abscabs 15206 lim supclsp 15442 ⇝ cli 15456 MblFncmbf 25521 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-cc 10394 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-disj 5077 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-oadd 8440 df-omul 8441 df-er 8673 df-map 8803 df-pm 8804 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-inf 9400 df-oi 9469 df-dju 9860 df-card 9898 df-acn 9901 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-n0 12449 df-z 12536 df-uz 12800 df-q 12914 df-rp 12958 df-xadd 13079 df-ioo 13316 df-ioc 13317 df-ico 13318 df-icc 13319 df-fz 13475 df-fzo 13622 df-fl 13760 df-seq 13973 df-exp 14033 df-hash 14302 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-limsup 15443 df-clim 15460 df-rlim 15461 df-sum 15659 df-xmet 21263 df-met 21264 df-ovol 25371 df-vol 25372 df-mbf 25526 |
| This theorem is referenced by: mbflim 25575 |
| Copyright terms: Public domain | W3C validator |