MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbflimlem Structured version   Visualization version   GIF version

Theorem mbflimlem 25047
Description: The pointwise limit of a sequence of measurable real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbflim.1 𝑍 = (β„€β‰₯β€˜π‘€)
mbflim.2 (πœ‘ β†’ 𝑀 ∈ β„€)
mbflim.4 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ (𝑛 ∈ 𝑍 ↦ 𝐡) ⇝ 𝐢)
mbflim.5 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ MblFn)
mbflimlem.6 ((πœ‘ ∧ (𝑛 ∈ 𝑍 ∧ π‘₯ ∈ 𝐴)) β†’ 𝐡 ∈ ℝ)
Assertion
Ref Expression
mbflimlem (πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ 𝐢) ∈ MblFn)
Distinct variable groups:   π‘₯,𝑛,𝐴   πœ‘,𝑛,π‘₯   𝑛,𝑍,π‘₯
Allowed substitution hints:   𝐡(π‘₯,𝑛)   𝐢(π‘₯,𝑛)   𝑀(π‘₯,𝑛)

Proof of Theorem mbflimlem
Dummy variables 𝑗 π‘˜ π‘š 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbflim.1 . . . . 5 𝑍 = (β„€β‰₯β€˜π‘€)
2 mbflimlem.6 . . . . . . 7 ((πœ‘ ∧ (𝑛 ∈ 𝑍 ∧ π‘₯ ∈ 𝐴)) β†’ 𝐡 ∈ ℝ)
32anass1rs 654 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝐴) ∧ 𝑛 ∈ 𝑍) β†’ 𝐡 ∈ ℝ)
43fmpttd 7068 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ (𝑛 ∈ 𝑍 ↦ 𝐡):π‘βŸΆβ„)
5 mbflim.2 . . . . . . 7 (πœ‘ β†’ 𝑀 ∈ β„€)
65adantr 482 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝑀 ∈ β„€)
7 mbflim.4 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ (𝑛 ∈ 𝑍 ↦ 𝐡) ⇝ 𝐢)
8 climrel 15381 . . . . . . . 8 Rel ⇝
98releldmi 5908 . . . . . . 7 ((𝑛 ∈ 𝑍 ↦ 𝐡) ⇝ 𝐢 β†’ (𝑛 ∈ 𝑍 ↦ 𝐡) ∈ dom ⇝ )
107, 9syl 17 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ (𝑛 ∈ 𝑍 ↦ 𝐡) ∈ dom ⇝ )
111climcau 15562 . . . . . 6 ((𝑀 ∈ β„€ ∧ (𝑛 ∈ 𝑍 ↦ 𝐡) ∈ dom ⇝ ) β†’ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘˜ ∈ 𝑍 βˆ€π‘— ∈ (β„€β‰₯β€˜π‘˜)(absβ€˜(((𝑛 ∈ 𝑍 ↦ 𝐡)β€˜π‘—) βˆ’ ((𝑛 ∈ 𝑍 ↦ 𝐡)β€˜π‘˜))) < 𝑦)
126, 10, 11syl2anc 585 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘˜ ∈ 𝑍 βˆ€π‘— ∈ (β„€β‰₯β€˜π‘˜)(absβ€˜(((𝑛 ∈ 𝑍 ↦ 𝐡)β€˜π‘—) βˆ’ ((𝑛 ∈ 𝑍 ↦ 𝐡)β€˜π‘˜))) < 𝑦)
131, 4, 12caurcvg 15568 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ (𝑛 ∈ 𝑍 ↦ 𝐡) ⇝ (lim supβ€˜(𝑛 ∈ 𝑍 ↦ 𝐡)))
14 climuni 15441 . . . 4 (((𝑛 ∈ 𝑍 ↦ 𝐡) ⇝ (lim supβ€˜(𝑛 ∈ 𝑍 ↦ 𝐡)) ∧ (𝑛 ∈ 𝑍 ↦ 𝐡) ⇝ 𝐢) β†’ (lim supβ€˜(𝑛 ∈ 𝑍 ↦ 𝐡)) = 𝐢)
1513, 7, 14syl2anc 585 . . 3 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ (lim supβ€˜(𝑛 ∈ 𝑍 ↦ 𝐡)) = 𝐢)
1615mpteq2dva 5210 . 2 (πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ (lim supβ€˜(𝑛 ∈ 𝑍 ↦ 𝐡))) = (π‘₯ ∈ 𝐴 ↦ 𝐢))
17 eqid 2737 . . 3 (π‘₯ ∈ 𝐴 ↦ (lim supβ€˜(𝑛 ∈ 𝑍 ↦ 𝐡))) = (π‘₯ ∈ 𝐴 ↦ (lim supβ€˜(𝑛 ∈ 𝑍 ↦ 𝐡)))
18 eqid 2737 . . 3 (π‘š ∈ ℝ ↦ sup((((𝑛 ∈ 𝑍 ↦ 𝐡) β€œ (π‘š[,)+∞)) ∩ ℝ*), ℝ*, < )) = (π‘š ∈ ℝ ↦ sup((((𝑛 ∈ 𝑍 ↦ 𝐡) β€œ (π‘š[,)+∞)) ∩ ℝ*), ℝ*, < ))
194ffvelcdmda 7040 . . . 4 (((πœ‘ ∧ π‘₯ ∈ 𝐴) ∧ π‘˜ ∈ 𝑍) β†’ ((𝑛 ∈ 𝑍 ↦ 𝐡)β€˜π‘˜) ∈ ℝ)
201, 6, 13, 19climrecl 15472 . . 3 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ (lim supβ€˜(𝑛 ∈ 𝑍 ↦ 𝐡)) ∈ ℝ)
21 mbflim.5 . . 3 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ MblFn)
221, 17, 18, 5, 20, 21, 2mbflimsup 25046 . 2 (πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ (lim supβ€˜(𝑛 ∈ 𝑍 ↦ 𝐡))) ∈ MblFn)
2316, 22eqeltrrd 2839 1 (πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ 𝐢) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3065  βˆƒwrex 3074   ∩ cin 3914   class class class wbr 5110   ↦ cmpt 5193  dom cdm 5638   β€œ cima 5641  β€˜cfv 6501  (class class class)co 7362  supcsup 9383  β„cr 11057  +∞cpnf 11193  β„*cxr 11195   < clt 11196   βˆ’ cmin 11392  β„€cz 12506  β„€β‰₯cuz 12770  β„+crp 12922  [,)cico 13273  abscabs 15126  lim supclsp 15359   ⇝ cli 15373  MblFncmbf 24994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cc 10378  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-disj 5076  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-omul 8422  df-er 8655  df-map 8774  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-inf 9386  df-oi 9453  df-dju 9844  df-card 9882  df-acn 9885  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-q 12881  df-rp 12923  df-xadd 13041  df-ioo 13275  df-ioc 13276  df-ico 13277  df-icc 13278  df-fz 13432  df-fzo 13575  df-fl 13704  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-limsup 15360  df-clim 15377  df-rlim 15378  df-sum 15578  df-xmet 20805  df-met 20806  df-ovol 24844  df-vol 24845  df-mbf 24999
This theorem is referenced by:  mbflim  25048
  Copyright terms: Public domain W3C validator