Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dva1dim Structured version   Visualization version   GIF version

Theorem dva1dim 39851
Description: Two expressions for the 1-dimensional subspaces of partial vector space A. Remark in [Crawley] p. 120 line 21, but using a non-identity translation (nonzero vector) 𝐹 whose trace is 𝑃 rather than 𝑃 itself; 𝐹 exists by cdlemf 39429. 𝐸 is the division ring base by erngdv 39859, and π‘ β€˜πΉ is the scalar product by dvavsca 39883. 𝐹 must be a non-identity translation for the expression to be a 1-dimensional subspace, although the theorem doesn't require it. (Contributed by NM, 14-Oct-2013.)
Hypotheses
Ref Expression
dva1dim.l ≀ = (leβ€˜πΎ)
dva1dim.h 𝐻 = (LHypβ€˜πΎ)
dva1dim.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
dva1dim.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
dva1dim.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
dva1dim (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ {𝑔 ∣ βˆƒπ‘  ∈ 𝐸 𝑔 = (π‘ β€˜πΉ)} = {𝑔 ∈ 𝑇 ∣ (π‘…β€˜π‘”) ≀ (π‘…β€˜πΉ)})
Distinct variable groups:   ≀ ,𝑠   𝐸,𝑠   𝑔,𝑠,𝐹   𝑔,𝐻,𝑠   𝑔,𝐾,𝑠   𝑅,𝑠   𝑇,𝑔,𝑠   𝑔,π‘Š,𝑠
Allowed substitution hints:   𝑅(𝑔)   𝐸(𝑔)   ≀ (𝑔)

Proof of Theorem dva1dim
StepHypRef Expression
1 dva1dim.h . . . . . . . . . 10 𝐻 = (LHypβ€˜πΎ)
2 dva1dim.t . . . . . . . . . 10 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
3 dva1dim.e . . . . . . . . . 10 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
41, 2, 3tendocl 39633 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) β†’ (π‘ β€˜πΉ) ∈ 𝑇)
5 dva1dim.l . . . . . . . . . 10 ≀ = (leβ€˜πΎ)
6 dva1dim.r . . . . . . . . . 10 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
75, 1, 2, 6, 3tendotp 39627 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) β†’ (π‘…β€˜(π‘ β€˜πΉ)) ≀ (π‘…β€˜πΉ))
84, 7jca 512 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) β†’ ((π‘ β€˜πΉ) ∈ 𝑇 ∧ (π‘…β€˜(π‘ β€˜πΉ)) ≀ (π‘…β€˜πΉ)))
983expb 1120 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) β†’ ((π‘ β€˜πΉ) ∈ 𝑇 ∧ (π‘…β€˜(π‘ β€˜πΉ)) ≀ (π‘…β€˜πΉ)))
109anass1rs 653 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑠 ∈ 𝐸) β†’ ((π‘ β€˜πΉ) ∈ 𝑇 ∧ (π‘…β€˜(π‘ β€˜πΉ)) ≀ (π‘…β€˜πΉ)))
11 eleq1 2821 . . . . . . 7 (𝑔 = (π‘ β€˜πΉ) β†’ (𝑔 ∈ 𝑇 ↔ (π‘ β€˜πΉ) ∈ 𝑇))
12 fveq2 6891 . . . . . . . 8 (𝑔 = (π‘ β€˜πΉ) β†’ (π‘…β€˜π‘”) = (π‘…β€˜(π‘ β€˜πΉ)))
1312breq1d 5158 . . . . . . 7 (𝑔 = (π‘ β€˜πΉ) β†’ ((π‘…β€˜π‘”) ≀ (π‘…β€˜πΉ) ↔ (π‘…β€˜(π‘ β€˜πΉ)) ≀ (π‘…β€˜πΉ)))
1411, 13anbi12d 631 . . . . . 6 (𝑔 = (π‘ β€˜πΉ) β†’ ((𝑔 ∈ 𝑇 ∧ (π‘…β€˜π‘”) ≀ (π‘…β€˜πΉ)) ↔ ((π‘ β€˜πΉ) ∈ 𝑇 ∧ (π‘…β€˜(π‘ β€˜πΉ)) ≀ (π‘…β€˜πΉ))))
1510, 14syl5ibrcom 246 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑠 ∈ 𝐸) β†’ (𝑔 = (π‘ β€˜πΉ) β†’ (𝑔 ∈ 𝑇 ∧ (π‘…β€˜π‘”) ≀ (π‘…β€˜πΉ))))
1615rexlimdva 3155 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (βˆƒπ‘  ∈ 𝐸 𝑔 = (π‘ β€˜πΉ) β†’ (𝑔 ∈ 𝑇 ∧ (π‘…β€˜π‘”) ≀ (π‘…β€˜πΉ))))
17 simpll 765 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (π‘…β€˜π‘”) ≀ (π‘…β€˜πΉ))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
18 simplr 767 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (π‘…β€˜π‘”) ≀ (π‘…β€˜πΉ))) β†’ 𝐹 ∈ 𝑇)
19 simprl 769 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (π‘…β€˜π‘”) ≀ (π‘…β€˜πΉ))) β†’ 𝑔 ∈ 𝑇)
20 simprr 771 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (π‘…β€˜π‘”) ≀ (π‘…β€˜πΉ))) β†’ (π‘…β€˜π‘”) ≀ (π‘…β€˜πΉ))
215, 1, 2, 6, 3tendoex 39841 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) ∧ (π‘…β€˜π‘”) ≀ (π‘…β€˜πΉ)) β†’ βˆƒπ‘  ∈ 𝐸 (π‘ β€˜πΉ) = 𝑔)
2217, 18, 19, 20, 21syl121anc 1375 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (π‘…β€˜π‘”) ≀ (π‘…β€˜πΉ))) β†’ βˆƒπ‘  ∈ 𝐸 (π‘ β€˜πΉ) = 𝑔)
23 eqcom 2739 . . . . . . 7 ((π‘ β€˜πΉ) = 𝑔 ↔ 𝑔 = (π‘ β€˜πΉ))
2423rexbii 3094 . . . . . 6 (βˆƒπ‘  ∈ 𝐸 (π‘ β€˜πΉ) = 𝑔 ↔ βˆƒπ‘  ∈ 𝐸 𝑔 = (π‘ β€˜πΉ))
2522, 24sylib 217 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (π‘…β€˜π‘”) ≀ (π‘…β€˜πΉ))) β†’ βˆƒπ‘  ∈ 𝐸 𝑔 = (π‘ β€˜πΉ))
2625ex 413 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ ((𝑔 ∈ 𝑇 ∧ (π‘…β€˜π‘”) ≀ (π‘…β€˜πΉ)) β†’ βˆƒπ‘  ∈ 𝐸 𝑔 = (π‘ β€˜πΉ)))
2716, 26impbid 211 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ (βˆƒπ‘  ∈ 𝐸 𝑔 = (π‘ β€˜πΉ) ↔ (𝑔 ∈ 𝑇 ∧ (π‘…β€˜π‘”) ≀ (π‘…β€˜πΉ))))
2827abbidv 2801 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ {𝑔 ∣ βˆƒπ‘  ∈ 𝐸 𝑔 = (π‘ β€˜πΉ)} = {𝑔 ∣ (𝑔 ∈ 𝑇 ∧ (π‘…β€˜π‘”) ≀ (π‘…β€˜πΉ))})
29 df-rab 3433 . 2 {𝑔 ∈ 𝑇 ∣ (π‘…β€˜π‘”) ≀ (π‘…β€˜πΉ)} = {𝑔 ∣ (𝑔 ∈ 𝑇 ∧ (π‘…β€˜π‘”) ≀ (π‘…β€˜πΉ))}
3028, 29eqtr4di 2790 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ {𝑔 ∣ βˆƒπ‘  ∈ 𝐸 𝑔 = (π‘ β€˜πΉ)} = {𝑔 ∈ 𝑇 ∣ (π‘…β€˜π‘”) ≀ (π‘…β€˜πΉ)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆƒwrex 3070  {crab 3432   class class class wbr 5148  β€˜cfv 6543  lecple 17203  HLchlt 38215  LHypclh 38850  LTrncltrn 38967  trLctrl 39024  TEndoctendo 39618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-riotaBAD 37818
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-undef 8257  df-map 8821  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-llines 38364  df-lplanes 38365  df-lvols 38366  df-lines 38367  df-psubsp 38369  df-pmap 38370  df-padd 38662  df-lhyp 38854  df-laut 38855  df-ldil 38970  df-ltrn 38971  df-trl 39025  df-tendo 39621
This theorem is referenced by:  dvhb1dimN  39852  dia1dim  39927
  Copyright terms: Public domain W3C validator