| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dva1dim | Structured version Visualization version GIF version | ||
| Description: Two expressions for the 1-dimensional subspaces of partial vector space A. Remark in [Crawley] p. 120 line 21, but using a non-identity translation (nonzero vector) 𝐹 whose trace is 𝑃 rather than 𝑃 itself; 𝐹 exists by cdlemf 40601. 𝐸 is the division ring base by erngdv 41031, and 𝑠‘𝐹 is the scalar product by dvavsca 41055. 𝐹 must be a non-identity translation for the expression to be a 1-dimensional subspace, although the theorem doesn't require it. (Contributed by NM, 14-Oct-2013.) |
| Ref | Expression |
|---|---|
| dva1dim.l | ⊢ ≤ = (le‘𝐾) |
| dva1dim.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dva1dim.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dva1dim.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| dva1dim.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dva1dim | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)} = {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔) ≤ (𝑅‘𝐹)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dva1dim.h | . . . . . . . . . 10 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | dva1dim.t | . . . . . . . . . 10 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | dva1dim.e | . . . . . . . . . 10 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | tendocl 40805 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑠‘𝐹) ∈ 𝑇) |
| 5 | dva1dim.l | . . . . . . . . . 10 ⊢ ≤ = (le‘𝐾) | |
| 6 | dva1dim.r | . . . . . . . . . 10 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 7 | 5, 1, 2, 6, 3 | tendotp 40799 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹)) |
| 8 | 4, 7 | jca 511 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
| 9 | 8 | 3expb 1120 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
| 10 | 9 | anass1rs 655 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑠 ∈ 𝐸) → ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
| 11 | eleq1 2819 | . . . . . . 7 ⊢ (𝑔 = (𝑠‘𝐹) → (𝑔 ∈ 𝑇 ↔ (𝑠‘𝐹) ∈ 𝑇)) | |
| 12 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑔 = (𝑠‘𝐹) → (𝑅‘𝑔) = (𝑅‘(𝑠‘𝐹))) | |
| 13 | 12 | breq1d 5101 | . . . . . . 7 ⊢ (𝑔 = (𝑠‘𝐹) → ((𝑅‘𝑔) ≤ (𝑅‘𝐹) ↔ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
| 14 | 11, 13 | anbi12d 632 | . . . . . 6 ⊢ (𝑔 = (𝑠‘𝐹) → ((𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)) ↔ ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹)))) |
| 15 | 10, 14 | syl5ibrcom 247 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑠 ∈ 𝐸) → (𝑔 = (𝑠‘𝐹) → (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)))) |
| 16 | 15 | rexlimdva 3133 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹) → (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)))) |
| 17 | simpll 766 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 18 | simplr 768 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → 𝐹 ∈ 𝑇) | |
| 19 | simprl 770 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → 𝑔 ∈ 𝑇) | |
| 20 | simprr 772 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → (𝑅‘𝑔) ≤ (𝑅‘𝐹)) | |
| 21 | 5, 1, 2, 6, 3 | tendoex 41013 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)) → ∃𝑠 ∈ 𝐸 (𝑠‘𝐹) = 𝑔) |
| 22 | 17, 18, 19, 20, 21 | syl121anc 1377 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → ∃𝑠 ∈ 𝐸 (𝑠‘𝐹) = 𝑔) |
| 23 | eqcom 2738 | . . . . . . 7 ⊢ ((𝑠‘𝐹) = 𝑔 ↔ 𝑔 = (𝑠‘𝐹)) | |
| 24 | 23 | rexbii 3079 | . . . . . 6 ⊢ (∃𝑠 ∈ 𝐸 (𝑠‘𝐹) = 𝑔 ↔ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)) |
| 25 | 22, 24 | sylib 218 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)) |
| 26 | 25 | ex 412 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)) → ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹))) |
| 27 | 16, 26 | impbid 212 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹) ↔ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)))) |
| 28 | 27 | abbidv 2797 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)} = {𝑔 ∣ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))}) |
| 29 | df-rab 3396 | . 2 ⊢ {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔) ≤ (𝑅‘𝐹)} = {𝑔 ∣ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))} | |
| 30 | 28, 29 | eqtr4di 2784 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)} = {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔) ≤ (𝑅‘𝐹)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 {crab 3395 class class class wbr 5091 ‘cfv 6481 lecple 17165 HLchlt 39388 LHypclh 40022 LTrncltrn 40139 trLctrl 40196 TEndoctendo 40790 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-riotaBAD 38991 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-undef 8203 df-map 8752 df-proset 18197 df-poset 18216 df-plt 18231 df-lub 18247 df-glb 18248 df-join 18249 df-meet 18250 df-p0 18326 df-p1 18327 df-lat 18335 df-clat 18402 df-oposet 39214 df-ol 39216 df-oml 39217 df-covers 39304 df-ats 39305 df-atl 39336 df-cvlat 39360 df-hlat 39389 df-llines 39536 df-lplanes 39537 df-lvols 39538 df-lines 39539 df-psubsp 39541 df-pmap 39542 df-padd 39834 df-lhyp 40026 df-laut 40027 df-ldil 40142 df-ltrn 40143 df-trl 40197 df-tendo 40793 |
| This theorem is referenced by: dvhb1dimN 41024 dia1dim 41099 |
| Copyright terms: Public domain | W3C validator |