![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dva1dim | Structured version Visualization version GIF version |
Description: Two expressions for the 1-dimensional subspaces of partial vector space A. Remark in [Crawley] p. 120 line 21, but using a non-identity translation (nonzero vector) 𝐹 whose trace is 𝑃 rather than 𝑃 itself; 𝐹 exists by cdlemf 39026. 𝐸 is the division ring base by erngdv 39456, and 𝑠‘𝐹 is the scalar product by dvavsca 39480. 𝐹 must be a non-identity translation for the expression to be a 1-dimensional subspace, although the theorem doesn't require it. (Contributed by NM, 14-Oct-2013.) |
Ref | Expression |
---|---|
dva1dim.l | ⊢ ≤ = (le‘𝐾) |
dva1dim.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dva1dim.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dva1dim.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
dva1dim.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dva1dim | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)} = {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔) ≤ (𝑅‘𝐹)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dva1dim.h | . . . . . . . . . 10 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dva1dim.t | . . . . . . . . . 10 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | dva1dim.e | . . . . . . . . . 10 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | tendocl 39230 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑠‘𝐹) ∈ 𝑇) |
5 | dva1dim.l | . . . . . . . . . 10 ⊢ ≤ = (le‘𝐾) | |
6 | dva1dim.r | . . . . . . . . . 10 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
7 | 5, 1, 2, 6, 3 | tendotp 39224 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹)) |
8 | 4, 7 | jca 512 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
9 | 8 | 3expb 1120 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
10 | 9 | anass1rs 653 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑠 ∈ 𝐸) → ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
11 | eleq1 2825 | . . . . . . 7 ⊢ (𝑔 = (𝑠‘𝐹) → (𝑔 ∈ 𝑇 ↔ (𝑠‘𝐹) ∈ 𝑇)) | |
12 | fveq2 6842 | . . . . . . . 8 ⊢ (𝑔 = (𝑠‘𝐹) → (𝑅‘𝑔) = (𝑅‘(𝑠‘𝐹))) | |
13 | 12 | breq1d 5115 | . . . . . . 7 ⊢ (𝑔 = (𝑠‘𝐹) → ((𝑅‘𝑔) ≤ (𝑅‘𝐹) ↔ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
14 | 11, 13 | anbi12d 631 | . . . . . 6 ⊢ (𝑔 = (𝑠‘𝐹) → ((𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)) ↔ ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹)))) |
15 | 10, 14 | syl5ibrcom 246 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑠 ∈ 𝐸) → (𝑔 = (𝑠‘𝐹) → (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)))) |
16 | 15 | rexlimdva 3152 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹) → (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)))) |
17 | simpll 765 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
18 | simplr 767 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → 𝐹 ∈ 𝑇) | |
19 | simprl 769 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → 𝑔 ∈ 𝑇) | |
20 | simprr 771 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → (𝑅‘𝑔) ≤ (𝑅‘𝐹)) | |
21 | 5, 1, 2, 6, 3 | tendoex 39438 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)) → ∃𝑠 ∈ 𝐸 (𝑠‘𝐹) = 𝑔) |
22 | 17, 18, 19, 20, 21 | syl121anc 1375 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → ∃𝑠 ∈ 𝐸 (𝑠‘𝐹) = 𝑔) |
23 | eqcom 2743 | . . . . . . 7 ⊢ ((𝑠‘𝐹) = 𝑔 ↔ 𝑔 = (𝑠‘𝐹)) | |
24 | 23 | rexbii 3097 | . . . . . 6 ⊢ (∃𝑠 ∈ 𝐸 (𝑠‘𝐹) = 𝑔 ↔ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)) |
25 | 22, 24 | sylib 217 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)) |
26 | 25 | ex 413 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)) → ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹))) |
27 | 16, 26 | impbid 211 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹) ↔ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)))) |
28 | 27 | abbidv 2805 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)} = {𝑔 ∣ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))}) |
29 | df-rab 3408 | . 2 ⊢ {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔) ≤ (𝑅‘𝐹)} = {𝑔 ∣ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))} | |
30 | 28, 29 | eqtr4di 2794 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)} = {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔) ≤ (𝑅‘𝐹)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 {cab 2713 ∃wrex 3073 {crab 3407 class class class wbr 5105 ‘cfv 6496 lecple 17140 HLchlt 37812 LHypclh 38447 LTrncltrn 38564 trLctrl 38621 TEndoctendo 39215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-riotaBAD 37415 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-1st 7921 df-2nd 7922 df-undef 8204 df-map 8767 df-proset 18184 df-poset 18202 df-plt 18219 df-lub 18235 df-glb 18236 df-join 18237 df-meet 18238 df-p0 18314 df-p1 18315 df-lat 18321 df-clat 18388 df-oposet 37638 df-ol 37640 df-oml 37641 df-covers 37728 df-ats 37729 df-atl 37760 df-cvlat 37784 df-hlat 37813 df-llines 37961 df-lplanes 37962 df-lvols 37963 df-lines 37964 df-psubsp 37966 df-pmap 37967 df-padd 38259 df-lhyp 38451 df-laut 38452 df-ldil 38567 df-ltrn 38568 df-trl 38622 df-tendo 39218 |
This theorem is referenced by: dvhb1dimN 39449 dia1dim 39524 |
Copyright terms: Public domain | W3C validator |