Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dva1dim Structured version   Visualization version   GIF version

Theorem dva1dim 40979
Description: Two expressions for the 1-dimensional subspaces of partial vector space A. Remark in [Crawley] p. 120 line 21, but using a non-identity translation (nonzero vector) 𝐹 whose trace is 𝑃 rather than 𝑃 itself; 𝐹 exists by cdlemf 40557. 𝐸 is the division ring base by erngdv 40987, and 𝑠𝐹 is the scalar product by dvavsca 41011. 𝐹 must be a non-identity translation for the expression to be a 1-dimensional subspace, although the theorem doesn't require it. (Contributed by NM, 14-Oct-2013.)
Hypotheses
Ref Expression
dva1dim.l = (le‘𝐾)
dva1dim.h 𝐻 = (LHyp‘𝐾)
dva1dim.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dva1dim.r 𝑅 = ((trL‘𝐾)‘𝑊)
dva1dim.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
dva1dim (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → {𝑔 ∣ ∃𝑠𝐸 𝑔 = (𝑠𝐹)} = {𝑔𝑇 ∣ (𝑅𝑔) (𝑅𝐹)})
Distinct variable groups:   ,𝑠   𝐸,𝑠   𝑔,𝑠,𝐹   𝑔,𝐻,𝑠   𝑔,𝐾,𝑠   𝑅,𝑠   𝑇,𝑔,𝑠   𝑔,𝑊,𝑠
Allowed substitution hints:   𝑅(𝑔)   𝐸(𝑔)   (𝑔)

Proof of Theorem dva1dim
StepHypRef Expression
1 dva1dim.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
2 dva1dim.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dva1dim.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendocl 40761 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
5 dva1dim.l . . . . . . . . . 10 = (le‘𝐾)
6 dva1dim.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
75, 1, 2, 6, 3tendotp 40755 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → (𝑅‘(𝑠𝐹)) (𝑅𝐹))
84, 7jca 511 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → ((𝑠𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠𝐹)) (𝑅𝐹)))
983expb 1120 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝐹𝑇)) → ((𝑠𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠𝐹)) (𝑅𝐹)))
109anass1rs 655 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → ((𝑠𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠𝐹)) (𝑅𝐹)))
11 eleq1 2816 . . . . . . 7 (𝑔 = (𝑠𝐹) → (𝑔𝑇 ↔ (𝑠𝐹) ∈ 𝑇))
12 fveq2 6858 . . . . . . . 8 (𝑔 = (𝑠𝐹) → (𝑅𝑔) = (𝑅‘(𝑠𝐹)))
1312breq1d 5117 . . . . . . 7 (𝑔 = (𝑠𝐹) → ((𝑅𝑔) (𝑅𝐹) ↔ (𝑅‘(𝑠𝐹)) (𝑅𝐹)))
1411, 13anbi12d 632 . . . . . 6 (𝑔 = (𝑠𝐹) → ((𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹)) ↔ ((𝑠𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠𝐹)) (𝑅𝐹))))
1510, 14syl5ibrcom 247 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → (𝑔 = (𝑠𝐹) → (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))))
1615rexlimdva 3134 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑠𝐸 𝑔 = (𝑠𝐹) → (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))))
17 simpll 766 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
18 simplr 768 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))) → 𝐹𝑇)
19 simprl 770 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))) → 𝑔𝑇)
20 simprr 772 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))) → (𝑅𝑔) (𝑅𝐹))
215, 1, 2, 6, 3tendoex 40969 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑔𝑇) ∧ (𝑅𝑔) (𝑅𝐹)) → ∃𝑠𝐸 (𝑠𝐹) = 𝑔)
2217, 18, 19, 20, 21syl121anc 1377 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))) → ∃𝑠𝐸 (𝑠𝐹) = 𝑔)
23 eqcom 2736 . . . . . . 7 ((𝑠𝐹) = 𝑔𝑔 = (𝑠𝐹))
2423rexbii 3076 . . . . . 6 (∃𝑠𝐸 (𝑠𝐹) = 𝑔 ↔ ∃𝑠𝐸 𝑔 = (𝑠𝐹))
2522, 24sylib 218 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))) → ∃𝑠𝐸 𝑔 = (𝑠𝐹))
2625ex 412 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹)) → ∃𝑠𝐸 𝑔 = (𝑠𝐹)))
2716, 26impbid 212 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑠𝐸 𝑔 = (𝑠𝐹) ↔ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))))
2827abbidv 2795 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → {𝑔 ∣ ∃𝑠𝐸 𝑔 = (𝑠𝐹)} = {𝑔 ∣ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))})
29 df-rab 3406 . 2 {𝑔𝑇 ∣ (𝑅𝑔) (𝑅𝐹)} = {𝑔 ∣ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))}
3028, 29eqtr4di 2782 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → {𝑔 ∣ ∃𝑠𝐸 𝑔 = (𝑠𝐹)} = {𝑔𝑇 ∣ (𝑅𝑔) (𝑅𝐹)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {crab 3405   class class class wbr 5107  cfv 6511  lecple 17227  HLchlt 39343  LHypclh 39978  LTrncltrn 40095  trLctrl 40152  TEndoctendo 40746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-undef 8252  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-tendo 40749
This theorem is referenced by:  dvhb1dimN  40980  dia1dim  41055
  Copyright terms: Public domain W3C validator