Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dva1dim Structured version   Visualization version   GIF version

Theorem dva1dim 38999
Description: Two expressions for the 1-dimensional subspaces of partial vector space A. Remark in [Crawley] p. 120 line 21, but using a non-identity translation (nonzero vector) 𝐹 whose trace is 𝑃 rather than 𝑃 itself; 𝐹 exists by cdlemf 38577. 𝐸 is the division ring base by erngdv 39007, and 𝑠𝐹 is the scalar product by dvavsca 39031. 𝐹 must be a non-identity translation for the expression to be a 1-dimensional subspace, although the theorem doesn't require it. (Contributed by NM, 14-Oct-2013.)
Hypotheses
Ref Expression
dva1dim.l = (le‘𝐾)
dva1dim.h 𝐻 = (LHyp‘𝐾)
dva1dim.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dva1dim.r 𝑅 = ((trL‘𝐾)‘𝑊)
dva1dim.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
dva1dim (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → {𝑔 ∣ ∃𝑠𝐸 𝑔 = (𝑠𝐹)} = {𝑔𝑇 ∣ (𝑅𝑔) (𝑅𝐹)})
Distinct variable groups:   ,𝑠   𝐸,𝑠   𝑔,𝑠,𝐹   𝑔,𝐻,𝑠   𝑔,𝐾,𝑠   𝑅,𝑠   𝑇,𝑔,𝑠   𝑔,𝑊,𝑠
Allowed substitution hints:   𝑅(𝑔)   𝐸(𝑔)   (𝑔)

Proof of Theorem dva1dim
StepHypRef Expression
1 dva1dim.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
2 dva1dim.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dva1dim.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendocl 38781 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
5 dva1dim.l . . . . . . . . . 10 = (le‘𝐾)
6 dva1dim.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
75, 1, 2, 6, 3tendotp 38775 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → (𝑅‘(𝑠𝐹)) (𝑅𝐹))
84, 7jca 512 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → ((𝑠𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠𝐹)) (𝑅𝐹)))
983expb 1119 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝐹𝑇)) → ((𝑠𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠𝐹)) (𝑅𝐹)))
109anass1rs 652 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → ((𝑠𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠𝐹)) (𝑅𝐹)))
11 eleq1 2826 . . . . . . 7 (𝑔 = (𝑠𝐹) → (𝑔𝑇 ↔ (𝑠𝐹) ∈ 𝑇))
12 fveq2 6774 . . . . . . . 8 (𝑔 = (𝑠𝐹) → (𝑅𝑔) = (𝑅‘(𝑠𝐹)))
1312breq1d 5084 . . . . . . 7 (𝑔 = (𝑠𝐹) → ((𝑅𝑔) (𝑅𝐹) ↔ (𝑅‘(𝑠𝐹)) (𝑅𝐹)))
1411, 13anbi12d 631 . . . . . 6 (𝑔 = (𝑠𝐹) → ((𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹)) ↔ ((𝑠𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠𝐹)) (𝑅𝐹))))
1510, 14syl5ibrcom 246 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → (𝑔 = (𝑠𝐹) → (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))))
1615rexlimdva 3213 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑠𝐸 𝑔 = (𝑠𝐹) → (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))))
17 simpll 764 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
18 simplr 766 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))) → 𝐹𝑇)
19 simprl 768 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))) → 𝑔𝑇)
20 simprr 770 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))) → (𝑅𝑔) (𝑅𝐹))
215, 1, 2, 6, 3tendoex 38989 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑔𝑇) ∧ (𝑅𝑔) (𝑅𝐹)) → ∃𝑠𝐸 (𝑠𝐹) = 𝑔)
2217, 18, 19, 20, 21syl121anc 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))) → ∃𝑠𝐸 (𝑠𝐹) = 𝑔)
23 eqcom 2745 . . . . . . 7 ((𝑠𝐹) = 𝑔𝑔 = (𝑠𝐹))
2423rexbii 3181 . . . . . 6 (∃𝑠𝐸 (𝑠𝐹) = 𝑔 ↔ ∃𝑠𝐸 𝑔 = (𝑠𝐹))
2522, 24sylib 217 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))) → ∃𝑠𝐸 𝑔 = (𝑠𝐹))
2625ex 413 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹)) → ∃𝑠𝐸 𝑔 = (𝑠𝐹)))
2716, 26impbid 211 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑠𝐸 𝑔 = (𝑠𝐹) ↔ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))))
2827abbidv 2807 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → {𝑔 ∣ ∃𝑠𝐸 𝑔 = (𝑠𝐹)} = {𝑔 ∣ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))})
29 df-rab 3073 . 2 {𝑔𝑇 ∣ (𝑅𝑔) (𝑅𝐹)} = {𝑔 ∣ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))}
3028, 29eqtr4di 2796 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → {𝑔 ∣ ∃𝑠𝐸 𝑔 = (𝑠𝐹)} = {𝑔𝑇 ∣ (𝑅𝑔) (𝑅𝐹)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  {crab 3068   class class class wbr 5074  cfv 6433  lecple 16969  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  trLctrl 38172  TEndoctendo 38766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-map 8617  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tendo 38769
This theorem is referenced by:  dvhb1dimN  39000  dia1dim  39075
  Copyright terms: Public domain W3C validator