![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dva1dim | Structured version Visualization version GIF version |
Description: Two expressions for the 1-dimensional subspaces of partial vector space A. Remark in [Crawley] p. 120 line 21, but using a non-identity translation (nonzero vector) 𝐹 whose trace is 𝑃 rather than 𝑃 itself; 𝐹 exists by cdlemf 40168. 𝐸 is the division ring base by erngdv 40598, and 𝑠‘𝐹 is the scalar product by dvavsca 40622. 𝐹 must be a non-identity translation for the expression to be a 1-dimensional subspace, although the theorem doesn't require it. (Contributed by NM, 14-Oct-2013.) |
Ref | Expression |
---|---|
dva1dim.l | ⊢ ≤ = (le‘𝐾) |
dva1dim.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dva1dim.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dva1dim.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
dva1dim.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dva1dim | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)} = {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔) ≤ (𝑅‘𝐹)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dva1dim.h | . . . . . . . . . 10 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dva1dim.t | . . . . . . . . . 10 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | dva1dim.e | . . . . . . . . . 10 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | tendocl 40372 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑠‘𝐹) ∈ 𝑇) |
5 | dva1dim.l | . . . . . . . . . 10 ⊢ ≤ = (le‘𝐾) | |
6 | dva1dim.r | . . . . . . . . . 10 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
7 | 5, 1, 2, 6, 3 | tendotp 40366 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹)) |
8 | 4, 7 | jca 510 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
9 | 8 | 3expb 1117 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
10 | 9 | anass1rs 653 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑠 ∈ 𝐸) → ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
11 | eleq1 2813 | . . . . . . 7 ⊢ (𝑔 = (𝑠‘𝐹) → (𝑔 ∈ 𝑇 ↔ (𝑠‘𝐹) ∈ 𝑇)) | |
12 | fveq2 6896 | . . . . . . . 8 ⊢ (𝑔 = (𝑠‘𝐹) → (𝑅‘𝑔) = (𝑅‘(𝑠‘𝐹))) | |
13 | 12 | breq1d 5159 | . . . . . . 7 ⊢ (𝑔 = (𝑠‘𝐹) → ((𝑅‘𝑔) ≤ (𝑅‘𝐹) ↔ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
14 | 11, 13 | anbi12d 630 | . . . . . 6 ⊢ (𝑔 = (𝑠‘𝐹) → ((𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)) ↔ ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹)))) |
15 | 10, 14 | syl5ibrcom 246 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑠 ∈ 𝐸) → (𝑔 = (𝑠‘𝐹) → (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)))) |
16 | 15 | rexlimdva 3144 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹) → (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)))) |
17 | simpll 765 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
18 | simplr 767 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → 𝐹 ∈ 𝑇) | |
19 | simprl 769 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → 𝑔 ∈ 𝑇) | |
20 | simprr 771 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → (𝑅‘𝑔) ≤ (𝑅‘𝐹)) | |
21 | 5, 1, 2, 6, 3 | tendoex 40580 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)) → ∃𝑠 ∈ 𝐸 (𝑠‘𝐹) = 𝑔) |
22 | 17, 18, 19, 20, 21 | syl121anc 1372 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → ∃𝑠 ∈ 𝐸 (𝑠‘𝐹) = 𝑔) |
23 | eqcom 2732 | . . . . . . 7 ⊢ ((𝑠‘𝐹) = 𝑔 ↔ 𝑔 = (𝑠‘𝐹)) | |
24 | 23 | rexbii 3083 | . . . . . 6 ⊢ (∃𝑠 ∈ 𝐸 (𝑠‘𝐹) = 𝑔 ↔ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)) |
25 | 22, 24 | sylib 217 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)) |
26 | 25 | ex 411 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)) → ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹))) |
27 | 16, 26 | impbid 211 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹) ↔ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)))) |
28 | 27 | abbidv 2794 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)} = {𝑔 ∣ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))}) |
29 | df-rab 3419 | . 2 ⊢ {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔) ≤ (𝑅‘𝐹)} = {𝑔 ∣ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))} | |
30 | 28, 29 | eqtr4di 2783 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)} = {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔) ≤ (𝑅‘𝐹)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {cab 2702 ∃wrex 3059 {crab 3418 class class class wbr 5149 ‘cfv 6549 lecple 17248 HLchlt 38954 LHypclh 39589 LTrncltrn 39706 trLctrl 39763 TEndoctendo 40357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-riotaBAD 38557 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 df-undef 8279 df-map 8847 df-proset 18295 df-poset 18313 df-plt 18330 df-lub 18346 df-glb 18347 df-join 18348 df-meet 18349 df-p0 18425 df-p1 18426 df-lat 18432 df-clat 18499 df-oposet 38780 df-ol 38782 df-oml 38783 df-covers 38870 df-ats 38871 df-atl 38902 df-cvlat 38926 df-hlat 38955 df-llines 39103 df-lplanes 39104 df-lvols 39105 df-lines 39106 df-psubsp 39108 df-pmap 39109 df-padd 39401 df-lhyp 39593 df-laut 39594 df-ldil 39709 df-ltrn 39710 df-trl 39764 df-tendo 40360 |
This theorem is referenced by: dvhb1dimN 40591 dia1dim 40666 |
Copyright terms: Public domain | W3C validator |