Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dva1dim Structured version   Visualization version   GIF version

Theorem dva1dim 41104
Description: Two expressions for the 1-dimensional subspaces of partial vector space A. Remark in [Crawley] p. 120 line 21, but using a non-identity translation (nonzero vector) 𝐹 whose trace is 𝑃 rather than 𝑃 itself; 𝐹 exists by cdlemf 40682. 𝐸 is the division ring base by erngdv 41112, and 𝑠𝐹 is the scalar product by dvavsca 41136. 𝐹 must be a non-identity translation for the expression to be a 1-dimensional subspace, although the theorem doesn't require it. (Contributed by NM, 14-Oct-2013.)
Hypotheses
Ref Expression
dva1dim.l = (le‘𝐾)
dva1dim.h 𝐻 = (LHyp‘𝐾)
dva1dim.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dva1dim.r 𝑅 = ((trL‘𝐾)‘𝑊)
dva1dim.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
dva1dim (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → {𝑔 ∣ ∃𝑠𝐸 𝑔 = (𝑠𝐹)} = {𝑔𝑇 ∣ (𝑅𝑔) (𝑅𝐹)})
Distinct variable groups:   ,𝑠   𝐸,𝑠   𝑔,𝑠,𝐹   𝑔,𝐻,𝑠   𝑔,𝐾,𝑠   𝑅,𝑠   𝑇,𝑔,𝑠   𝑔,𝑊,𝑠
Allowed substitution hints:   𝑅(𝑔)   𝐸(𝑔)   (𝑔)

Proof of Theorem dva1dim
StepHypRef Expression
1 dva1dim.h . . . . . . . . . 10 𝐻 = (LHyp‘𝐾)
2 dva1dim.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dva1dim.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
41, 2, 3tendocl 40886 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
5 dva1dim.l . . . . . . . . . 10 = (le‘𝐾)
6 dva1dim.r . . . . . . . . . 10 𝑅 = ((trL‘𝐾)‘𝑊)
75, 1, 2, 6, 3tendotp 40880 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → (𝑅‘(𝑠𝐹)) (𝑅𝐹))
84, 7jca 511 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝐹𝑇) → ((𝑠𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠𝐹)) (𝑅𝐹)))
983expb 1120 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝐹𝑇)) → ((𝑠𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠𝐹)) (𝑅𝐹)))
109anass1rs 655 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → ((𝑠𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠𝐹)) (𝑅𝐹)))
11 eleq1 2821 . . . . . . 7 (𝑔 = (𝑠𝐹) → (𝑔𝑇 ↔ (𝑠𝐹) ∈ 𝑇))
12 fveq2 6828 . . . . . . . 8 (𝑔 = (𝑠𝐹) → (𝑅𝑔) = (𝑅‘(𝑠𝐹)))
1312breq1d 5103 . . . . . . 7 (𝑔 = (𝑠𝐹) → ((𝑅𝑔) (𝑅𝐹) ↔ (𝑅‘(𝑠𝐹)) (𝑅𝐹)))
1411, 13anbi12d 632 . . . . . 6 (𝑔 = (𝑠𝐹) → ((𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹)) ↔ ((𝑠𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠𝐹)) (𝑅𝐹))))
1510, 14syl5ibrcom 247 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ 𝑠𝐸) → (𝑔 = (𝑠𝐹) → (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))))
1615rexlimdva 3134 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑠𝐸 𝑔 = (𝑠𝐹) → (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))))
17 simpll 766 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
18 simplr 768 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))) → 𝐹𝑇)
19 simprl 770 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))) → 𝑔𝑇)
20 simprr 772 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))) → (𝑅𝑔) (𝑅𝐹))
215, 1, 2, 6, 3tendoex 41094 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑔𝑇) ∧ (𝑅𝑔) (𝑅𝐹)) → ∃𝑠𝐸 (𝑠𝐹) = 𝑔)
2217, 18, 19, 20, 21syl121anc 1377 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))) → ∃𝑠𝐸 (𝑠𝐹) = 𝑔)
23 eqcom 2740 . . . . . . 7 ((𝑠𝐹) = 𝑔𝑔 = (𝑠𝐹))
2423rexbii 3080 . . . . . 6 (∃𝑠𝐸 (𝑠𝐹) = 𝑔 ↔ ∃𝑠𝐸 𝑔 = (𝑠𝐹))
2522, 24sylib 218 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))) → ∃𝑠𝐸 𝑔 = (𝑠𝐹))
2625ex 412 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹)) → ∃𝑠𝐸 𝑔 = (𝑠𝐹)))
2716, 26impbid 212 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (∃𝑠𝐸 𝑔 = (𝑠𝐹) ↔ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))))
2827abbidv 2799 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → {𝑔 ∣ ∃𝑠𝐸 𝑔 = (𝑠𝐹)} = {𝑔 ∣ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))})
29 df-rab 3397 . 2 {𝑔𝑇 ∣ (𝑅𝑔) (𝑅𝐹)} = {𝑔 ∣ (𝑔𝑇 ∧ (𝑅𝑔) (𝑅𝐹))}
3028, 29eqtr4di 2786 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → {𝑔 ∣ ∃𝑠𝐸 𝑔 = (𝑠𝐹)} = {𝑔𝑇 ∣ (𝑅𝑔) (𝑅𝐹)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  {cab 2711  wrex 3057  {crab 3396   class class class wbr 5093  cfv 6486  lecple 17170  HLchlt 39469  LHypclh 40103  LTrncltrn 40220  trLctrl 40277  TEndoctendo 40871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-riotaBAD 39072
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-undef 8209  df-map 8758  df-proset 18202  df-poset 18221  df-plt 18236  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-p1 18332  df-lat 18340  df-clat 18407  df-oposet 39295  df-ol 39297  df-oml 39298  df-covers 39385  df-ats 39386  df-atl 39417  df-cvlat 39441  df-hlat 39470  df-llines 39617  df-lplanes 39618  df-lvols 39619  df-lines 39620  df-psubsp 39622  df-pmap 39623  df-padd 39915  df-lhyp 40107  df-laut 40108  df-ldil 40223  df-ltrn 40224  df-trl 40278  df-tendo 40874
This theorem is referenced by:  dvhb1dimN  41105  dia1dim  41180
  Copyright terms: Public domain W3C validator