![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dva1dim | Structured version Visualization version GIF version |
Description: Two expressions for the 1-dimensional subspaces of partial vector space A. Remark in [Crawley] p. 120 line 21, but using a non-identity translation (nonzero vector) 𝐹 whose trace is 𝑃 rather than 𝑃 itself; 𝐹 exists by cdlemf 40520. 𝐸 is the division ring base by erngdv 40950, and 𝑠‘𝐹 is the scalar product by dvavsca 40974. 𝐹 must be a non-identity translation for the expression to be a 1-dimensional subspace, although the theorem doesn't require it. (Contributed by NM, 14-Oct-2013.) |
Ref | Expression |
---|---|
dva1dim.l | ⊢ ≤ = (le‘𝐾) |
dva1dim.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dva1dim.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dva1dim.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
dva1dim.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dva1dim | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)} = {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔) ≤ (𝑅‘𝐹)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dva1dim.h | . . . . . . . . . 10 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dva1dim.t | . . . . . . . . . 10 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | dva1dim.e | . . . . . . . . . 10 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | tendocl 40724 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑠‘𝐹) ∈ 𝑇) |
5 | dva1dim.l | . . . . . . . . . 10 ⊢ ≤ = (le‘𝐾) | |
6 | dva1dim.r | . . . . . . . . . 10 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
7 | 5, 1, 2, 6, 3 | tendotp 40718 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹)) |
8 | 4, 7 | jca 511 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
9 | 8 | 3expb 1120 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
10 | 9 | anass1rs 654 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑠 ∈ 𝐸) → ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
11 | eleq1 2832 | . . . . . . 7 ⊢ (𝑔 = (𝑠‘𝐹) → (𝑔 ∈ 𝑇 ↔ (𝑠‘𝐹) ∈ 𝑇)) | |
12 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑔 = (𝑠‘𝐹) → (𝑅‘𝑔) = (𝑅‘(𝑠‘𝐹))) | |
13 | 12 | breq1d 5176 | . . . . . . 7 ⊢ (𝑔 = (𝑠‘𝐹) → ((𝑅‘𝑔) ≤ (𝑅‘𝐹) ↔ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹))) |
14 | 11, 13 | anbi12d 631 | . . . . . 6 ⊢ (𝑔 = (𝑠‘𝐹) → ((𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)) ↔ ((𝑠‘𝐹) ∈ 𝑇 ∧ (𝑅‘(𝑠‘𝐹)) ≤ (𝑅‘𝐹)))) |
15 | 10, 14 | syl5ibrcom 247 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ 𝑠 ∈ 𝐸) → (𝑔 = (𝑠‘𝐹) → (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)))) |
16 | 15 | rexlimdva 3161 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹) → (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)))) |
17 | simpll 766 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
18 | simplr 768 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → 𝐹 ∈ 𝑇) | |
19 | simprl 770 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → 𝑔 ∈ 𝑇) | |
20 | simprr 772 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → (𝑅‘𝑔) ≤ (𝑅‘𝐹)) | |
21 | 5, 1, 2, 6, 3 | tendoex 40932 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)) → ∃𝑠 ∈ 𝐸 (𝑠‘𝐹) = 𝑔) |
22 | 17, 18, 19, 20, 21 | syl121anc 1375 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → ∃𝑠 ∈ 𝐸 (𝑠‘𝐹) = 𝑔) |
23 | eqcom 2747 | . . . . . . 7 ⊢ ((𝑠‘𝐹) = 𝑔 ↔ 𝑔 = (𝑠‘𝐹)) | |
24 | 23 | rexbii 3100 | . . . . . 6 ⊢ (∃𝑠 ∈ 𝐸 (𝑠‘𝐹) = 𝑔 ↔ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)) |
25 | 22, 24 | sylib 218 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))) → ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)) |
26 | 25 | ex 412 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → ((𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)) → ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹))) |
27 | 16, 26 | impbid 212 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹) ↔ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹)))) |
28 | 27 | abbidv 2811 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)} = {𝑔 ∣ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))}) |
29 | df-rab 3444 | . 2 ⊢ {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔) ≤ (𝑅‘𝐹)} = {𝑔 ∣ (𝑔 ∈ 𝑇 ∧ (𝑅‘𝑔) ≤ (𝑅‘𝐹))} | |
30 | 28, 29 | eqtr4di 2798 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → {𝑔 ∣ ∃𝑠 ∈ 𝐸 𝑔 = (𝑠‘𝐹)} = {𝑔 ∈ 𝑇 ∣ (𝑅‘𝑔) ≤ (𝑅‘𝐹)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 {crab 3443 class class class wbr 5166 ‘cfv 6573 lecple 17318 HLchlt 39306 LHypclh 39941 LTrncltrn 40058 trLctrl 40115 TEndoctendo 40709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-undef 8314 df-map 8886 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tendo 40712 |
This theorem is referenced by: dvhb1dimN 40943 dia1dim 41018 |
Copyright terms: Public domain | W3C validator |