MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mtest Structured version   Visualization version   GIF version

Theorem mtest 26329
Description: The Weierstrass M-test. If 𝐹 is a sequence of functions which are uniformly bounded by the convergent sequence 𝑀(𝑘), then the series generated by the sequence 𝐹 converges uniformly. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
mtest.z 𝑍 = (ℤ𝑁)
mtest.n (𝜑𝑁 ∈ ℤ)
mtest.s (𝜑𝑆𝑉)
mtest.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
mtest.m (𝜑𝑀𝑊)
mtest.c ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℝ)
mtest.l ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
mtest.d (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ )
Assertion
Ref Expression
mtest (𝜑 → seq𝑁( ∘f + , 𝐹) ∈ dom (⇝𝑢𝑆))
Distinct variable groups:   𝑧,𝑘,𝐹   𝑘,𝑀,𝑧   𝑘,𝑁,𝑧   𝜑,𝑘,𝑧   𝑘,𝑍,𝑧   𝑆,𝑘,𝑧
Allowed substitution hints:   𝑉(𝑧,𝑘)   𝑊(𝑧,𝑘)

Proof of Theorem mtest
Dummy variables 𝑖 𝑗 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mtest.n . . . 4 (𝜑𝑁 ∈ ℤ)
2 mtest.d . . . 4 (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ )
3 mtest.z . . . . 5 𝑍 = (ℤ𝑁)
43climcau 15596 . . . 4 ((𝑁 ∈ ℤ ∧ seq𝑁( + , 𝑀) ∈ dom ⇝ ) → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟)
51, 2, 4syl2anc 584 . . 3 (𝜑 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟)
6 seqfn 13938 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → seq𝑁( ∘f + , 𝐹) Fn (ℤ𝑁))
71, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → seq𝑁( ∘f + , 𝐹) Fn (ℤ𝑁))
83fneq2i 6584 . . . . . . . . . . . . . . . . . 18 (seq𝑁( ∘f + , 𝐹) Fn 𝑍 ↔ seq𝑁( ∘f + , 𝐹) Fn (ℤ𝑁))
97, 8sylibr 234 . . . . . . . . . . . . . . . . 17 (𝜑 → seq𝑁( ∘f + , 𝐹) Fn 𝑍)
10 mtest.s . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑆𝑉)
1110elexd 3462 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ∈ V)
1211adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → 𝑆 ∈ V)
13 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝑍) → 𝑖𝑍)
1413, 3eleqtrdi 2838 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → 𝑖 ∈ (ℤ𝑁))
15 mtest.f . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
1615adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖𝑍) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
17 elfzuz 13441 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (𝑁...𝑖) → 𝑘 ∈ (ℤ𝑁))
1817, 3eleqtrrdi 2839 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (𝑁...𝑖) → 𝑘𝑍)
19 ffvelcdm 7019 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹:𝑍⟶(ℂ ↑m 𝑆) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
2016, 18, 19syl2an 596 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
21 elmapi 8783 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
2220, 21syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘):𝑆⟶ℂ)
2322feqmptd 6895 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) = (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)))
2418adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → 𝑘𝑍)
25 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
2625fveq1d 6828 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑘 → ((𝐹𝑛)‘𝑧) = ((𝐹𝑘)‘𝑧))
27 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))
28 fvex 6839 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑘)‘𝑧) ∈ V
2926, 27, 28fvmpt 6934 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘𝑍 → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
3024, 29syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
3130mpteq2dv 5189 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑧𝑆 ↦ ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘)) = (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)))
3223, 31eqtr4d 2767 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) = (𝑧𝑆 ↦ ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘)))
3312, 14, 32seqof 13984 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑍) → (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
341adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧𝑆) → 𝑁 ∈ ℤ)
3515ffvelcdmda 7022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (ℂ ↑m 𝑆))
36 elmapi 8783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝑛) ∈ (ℂ ↑m 𝑆) → (𝐹𝑛):𝑆⟶ℂ)
3735, 36syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑛𝑍) → (𝐹𝑛):𝑆⟶ℂ)
3837ffvelcdmda 7022 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑛𝑍) ∧ 𝑧𝑆) → ((𝐹𝑛)‘𝑧) ∈ ℂ)
3938an32s 652 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝑆) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑧) ∈ ℂ)
4039fmpttd 7053 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧𝑆) → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)):𝑍⟶ℂ)
4140ffvelcdmda 7022 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ 𝑖𝑍) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑖) ∈ ℂ)
423, 34, 41serf 13955 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑆) → seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))):𝑍⟶ℂ)
4342ffvelcdmda 7022 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ 𝑖𝑍) → (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ ℂ)
4443an32s 652 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖𝑍) ∧ 𝑧𝑆) → (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ ℂ)
4544fmpttd 7053 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)):𝑆⟶ℂ)
46 cnex 11109 . . . . . . . . . . . . . . . . . . . . 21 ℂ ∈ V
47 elmapg 8773 . . . . . . . . . . . . . . . . . . . . 21 ((ℂ ∈ V ∧ 𝑆 ∈ V) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ∈ (ℂ ↑m 𝑆) ↔ (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)):𝑆⟶ℂ))
4846, 12, 47sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ∈ (ℂ ↑m 𝑆) ↔ (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)):𝑆⟶ℂ))
4945, 48mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑍) → (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ∈ (ℂ ↑m 𝑆))
5033, 49eqeltrd 2828 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝑍) → (seq𝑁( ∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆))
5150ralrimiva 3121 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑖𝑍 (seq𝑁( ∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆))
52 ffnfv 7057 . . . . . . . . . . . . . . . . 17 (seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆) ↔ (seq𝑁( ∘f + , 𝐹) Fn 𝑍 ∧ ∀𝑖𝑍 (seq𝑁( ∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆)))
539, 51, 52sylanbrc 583 . . . . . . . . . . . . . . . 16 (𝜑 → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆))
5453ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆))
553uztrn2 12772 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑖 ∈ (ℤ𝑗)) → 𝑖𝑍)
5655adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑖𝑍)
5754, 56ffvelcdmd 7023 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆))
58 elmapi 8783 . . . . . . . . . . . . . 14 ((seq𝑁( ∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆) → (seq𝑁( ∘f + , 𝐹)‘𝑖):𝑆⟶ℂ)
5957, 58syl 17 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑖):𝑆⟶ℂ)
6059ffvelcdmda 7022 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) ∈ ℂ)
61 simprl 770 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗𝑍)
6254, 61ffvelcdmd 7023 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑗) ∈ (ℂ ↑m 𝑆))
63 elmapi 8783 . . . . . . . . . . . . . 14 ((seq𝑁( ∘f + , 𝐹)‘𝑗) ∈ (ℂ ↑m 𝑆) → (seq𝑁( ∘f + , 𝐹)‘𝑗):𝑆⟶ℂ)
6462, 63syl 17 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑗):𝑆⟶ℂ)
6564ffvelcdmda 7022 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧) ∈ ℂ)
6660, 65subcld 11493 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧)) ∈ ℂ)
6766abscld 15364 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ∈ ℝ)
68 fzfid 13898 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((𝑗 + 1)...𝑖) ∈ Fin)
69 ssun2 4132 . . . . . . . . . . . . . . . 16 ((𝑗 + 1)...𝑖) ⊆ ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖))
7061, 3eleqtrdi 2838 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 ∈ (ℤ𝑁))
71 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑖 ∈ (ℤ𝑗))
72 elfzuzb 13439 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (𝑁...𝑖) ↔ (𝑗 ∈ (ℤ𝑁) ∧ 𝑖 ∈ (ℤ𝑗)))
7370, 71, 72sylanbrc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 ∈ (𝑁...𝑖))
74 fzsplit 13471 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (𝑁...𝑖) → (𝑁...𝑖) = ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖)))
7573, 74syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (𝑁...𝑖) = ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖)))
7669, 75sseqtrrid 3981 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((𝑗 + 1)...𝑖) ⊆ (𝑁...𝑖))
7776sselda 3937 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 𝑘 ∈ (𝑁...𝑖))
7877adantlr 715 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 𝑘 ∈ (𝑁...𝑖))
7915ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
8079, 18, 19syl2an 596 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
8180, 21syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘):𝑆⟶ℂ)
8281ffvelcdmda 7022 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
8382an32s 652 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑖)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
8478, 83syldan 591 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
8584abscld 15364 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
8668, 85fsumrecl 15659 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
87 mtest.c . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℝ)
883, 1, 87serfre 13956 . . . . . . . . . . . . . . . 16 (𝜑 → seq𝑁( + , 𝑀):𝑍⟶ℝ)
8988ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → seq𝑁( + , 𝑀):𝑍⟶ℝ)
9089, 56ffvelcdmd 7023 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( + , 𝑀)‘𝑖) ∈ ℝ)
9189, 61ffvelcdmd 7023 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( + , 𝑀)‘𝑗) ∈ ℝ)
9290, 91resubcld 11566 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)) ∈ ℝ)
9392recnd 11162 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)) ∈ ℂ)
9493abscld 15364 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∈ ℝ)
9594adantr 480 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∈ ℝ)
9655, 33sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
9796adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
9897fveq1d 6828 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) = ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))‘𝑧))
99 fvex 6839 . . . . . . . . . . . . . . . 16 (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ V
100 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
101100fvmpt2 6945 . . . . . . . . . . . . . . . 16 ((𝑧𝑆 ∧ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ V) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
10299, 101mpan2 691 . . . . . . . . . . . . . . 15 (𝑧𝑆 → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
10398, 102sylan9eq 2784 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
104 fveq2 6826 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (seq𝑁( ∘f + , 𝐹)‘𝑖) = (seq𝑁( ∘f + , 𝐹)‘𝑗))
105 fveq2 6826 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
106105mpteq2dv 5189 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
107104, 106eqeq12d 2745 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → ((seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ↔ (seq𝑁( ∘f + , 𝐹)‘𝑗) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))))
10833ralrimiva 3121 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑖𝑍 (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
109108ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ∀𝑖𝑍 (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
110107, 109, 61rspcdva 3580 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑗) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
111110fveq1d 6828 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧) = ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))‘𝑧))
112 fvex 6839 . . . . . . . . . . . . . . . 16 (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗) ∈ V
113 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
114113fvmpt2 6945 . . . . . . . . . . . . . . . 16 ((𝑧𝑆 ∧ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗) ∈ V) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
115112, 114mpan2 691 . . . . . . . . . . . . . . 15 (𝑧𝑆 → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
116111, 115sylan9eq 2784 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
117103, 116oveq12d 7371 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧)) = ((seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) − (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
11818adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑖)) → 𝑘𝑍)
119118, 29syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑖)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
12056adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑖𝑍)
121120, 3eleqtrdi 2838 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑖 ∈ (ℤ𝑁))
122119, 121, 83fsumser 15655 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
123 elfzuz 13441 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (𝑁...𝑗) → 𝑘 ∈ (ℤ𝑁))
124123, 3eleqtrrdi 2839 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑁...𝑗) → 𝑘𝑍)
125124adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑗)) → 𝑘𝑍)
126125, 29syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑗)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
12761adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑗𝑍)
128127, 3eleqtrdi 2838 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑗 ∈ (ℤ𝑁))
12979, 124, 19syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
130129, 21syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘):𝑆⟶ℂ)
131130ffvelcdmda 7022 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
132131an32s 652 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑗)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
133126, 128, 132fsumser 15655 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
134122, 133oveq12d 7371 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) − Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧)) = ((seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) − (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
135 fzfid 13898 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (𝑁...𝑗) ∈ Fin)
136135, 132fsumcl 15658 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧) ∈ ℂ)
13768, 84fsumcl 15658 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧) ∈ ℂ)
138 eluzelre 12764 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (ℤ𝑁) → 𝑗 ∈ ℝ)
13970, 138syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 ∈ ℝ)
140139ltp1d 12073 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 < (𝑗 + 1))
141 fzdisj 13472 . . . . . . . . . . . . . . . . 17 (𝑗 < (𝑗 + 1) → ((𝑁...𝑗) ∩ ((𝑗 + 1)...𝑖)) = ∅)
142140, 141syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((𝑁...𝑗) ∩ ((𝑗 + 1)...𝑖)) = ∅)
143142adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((𝑁...𝑗) ∩ ((𝑗 + 1)...𝑖)) = ∅)
14475adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (𝑁...𝑖) = ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖)))
145 fzfid 13898 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (𝑁...𝑖) ∈ Fin)
146143, 144, 145, 83fsumsplit 15666 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) = (Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧)))
147136, 137, 146mvrladdd 11551 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) − Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧))
148117, 134, 1473eqtr2d 2770 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧))
149148fveq2d 6830 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) = (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧)))
15068, 84fsumabs 15726 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧)) ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)))
151149, 150eqbrtrd 5117 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)))
152 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝜑)
153152, 18, 87syl2an 596 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑀𝑘) ∈ ℝ)
15477, 153syldan 591 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (𝑀𝑘) ∈ ℝ)
155154adantlr 715 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (𝑀𝑘) ∈ ℝ)
15678, 18syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 𝑘𝑍)
157 mtest.l . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
158157ad4ant14 752 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
159158anass1rs 655 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘𝑍) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
160156, 159syldan 591 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
16168, 85, 155, 160fsumle 15724 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)) ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
162 eqidd 2730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑀𝑘) = (𝑀𝑘))
16356, 3eleqtrdi 2838 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑖 ∈ (ℤ𝑁))
164153recnd 11162 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑀𝑘) ∈ ℂ)
165162, 163, 164fsumser 15655 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) = (seq𝑁( + , 𝑀)‘𝑖))
166 eqidd 2730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝑀𝑘) = (𝑀𝑘))
167152, 124, 87syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝑀𝑘) ∈ ℝ)
168167recnd 11162 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝑀𝑘) ∈ ℂ)
169166, 70, 168fsumser 15655 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘) = (seq𝑁( + , 𝑀)‘𝑗))
170165, 169oveq12d 7371 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) − Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘)) = ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)))
171 fzfid 13898 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (𝑁...𝑗) ∈ Fin)
172171, 168fsumcl 15658 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘) ∈ ℂ)
173 fzfid 13898 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((𝑗 + 1)...𝑖) ∈ Fin)
17477, 164syldan 591 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (𝑀𝑘) ∈ ℂ)
175173, 174fsumcl 15658 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘) ∈ ℂ)
176 fzfid 13898 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (𝑁...𝑖) ∈ Fin)
177142, 75, 176, 164fsumsplit 15666 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) = (Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)))
178172, 175, 177mvrladdd 11551 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) − Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
179170, 178eqtr3d 2766 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
180179fveq2d 6830 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) = (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)))
181180adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) = (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)))
182179, 92eqeltrrd 2829 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘) ∈ ℝ)
183182adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘) ∈ ℝ)
184 0red 11137 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 0 ∈ ℝ)
18584absge0d 15372 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 0 ≤ (abs‘((𝐹𝑘)‘𝑧)))
186184, 85, 155, 185, 160letrd 11291 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 0 ≤ (𝑀𝑘))
18768, 155, 186fsumge0 15720 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 0 ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
188183, 187absidd 15348 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
189181, 188eqtrd 2764 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
190161, 189breqtrrd 5123 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))))
19167, 86, 95, 151, 190letrd 11291 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))))
192 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑟 ∈ ℝ+)
193192rpred 12955 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑟 ∈ ℝ)
194 lelttr 11224 . . . . . . . . . 10 (((abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ∈ ℝ ∧ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∈ ℝ ∧ 𝑟 ∈ ℝ) → (((abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∧ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
19567, 95, 193, 194syl3anc 1373 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∧ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
196191, 195mpand 695 . . . . . . . 8 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
197196ralrimdva 3129 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
198197anassrs 467 . . . . . 6 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
199198ralimdva 3141 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
200199reximdva 3142 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∃𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
201200ralimdva 3141 . . 3 (𝜑 → (∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
2025, 201mpd 15 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟)
2033, 1, 10, 53ulmcau 26320 . 2 (𝜑 → (seq𝑁( ∘f + , 𝐹) ∈ dom (⇝𝑢𝑆) ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
204202, 203mpbird 257 1 (𝜑 → seq𝑁( ∘f + , 𝐹) ∈ dom (⇝𝑢𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  cun 3903  cin 3904  c0 4286   class class class wbr 5095  cmpt 5176  dom cdm 5623   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  m cmap 8760  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   < clt 11168  cle 11169  cmin 11365  cz 12489  cuz 12753  +crp 12911  ...cfz 13428  seqcseq 13926  abscabs 15159  cli 15409  Σcsu 15611  𝑢culm 26301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-ico 13272  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ulm 26302
This theorem is referenced by:  pserulm  26347  lgamgulmlem6  26960  knoppcnlem6  36471
  Copyright terms: Public domain W3C validator