MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mtest Structured version   Visualization version   GIF version

Theorem mtest 26341
Description: The Weierstrass M-test. If 𝐹 is a sequence of functions which are uniformly bounded by the convergent sequence 𝑀(𝑘), then the series generated by the sequence 𝐹 converges uniformly. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
mtest.z 𝑍 = (ℤ𝑁)
mtest.n (𝜑𝑁 ∈ ℤ)
mtest.s (𝜑𝑆𝑉)
mtest.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
mtest.m (𝜑𝑀𝑊)
mtest.c ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℝ)
mtest.l ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
mtest.d (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ )
Assertion
Ref Expression
mtest (𝜑 → seq𝑁( ∘f + , 𝐹) ∈ dom (⇝𝑢𝑆))
Distinct variable groups:   𝑧,𝑘,𝐹   𝑘,𝑀,𝑧   𝑘,𝑁,𝑧   𝜑,𝑘,𝑧   𝑘,𝑍,𝑧   𝑆,𝑘,𝑧
Allowed substitution hints:   𝑉(𝑧,𝑘)   𝑊(𝑧,𝑘)

Proof of Theorem mtest
Dummy variables 𝑖 𝑗 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mtest.n . . . 4 (𝜑𝑁 ∈ ℤ)
2 mtest.d . . . 4 (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ )
3 mtest.z . . . . 5 𝑍 = (ℤ𝑁)
43climcau 15580 . . . 4 ((𝑁 ∈ ℤ ∧ seq𝑁( + , 𝑀) ∈ dom ⇝ ) → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟)
51, 2, 4syl2anc 584 . . 3 (𝜑 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟)
6 seqfn 13922 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → seq𝑁( ∘f + , 𝐹) Fn (ℤ𝑁))
71, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → seq𝑁( ∘f + , 𝐹) Fn (ℤ𝑁))
83fneq2i 6584 . . . . . . . . . . . . . . . . . 18 (seq𝑁( ∘f + , 𝐹) Fn 𝑍 ↔ seq𝑁( ∘f + , 𝐹) Fn (ℤ𝑁))
97, 8sylibr 234 . . . . . . . . . . . . . . . . 17 (𝜑 → seq𝑁( ∘f + , 𝐹) Fn 𝑍)
10 mtest.s . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑆𝑉)
1110elexd 3461 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ∈ V)
1211adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → 𝑆 ∈ V)
13 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝑍) → 𝑖𝑍)
1413, 3eleqtrdi 2843 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → 𝑖 ∈ (ℤ𝑁))
15 mtest.f . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
1615adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖𝑍) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
17 elfzuz 13422 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (𝑁...𝑖) → 𝑘 ∈ (ℤ𝑁))
1817, 3eleqtrrdi 2844 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (𝑁...𝑖) → 𝑘𝑍)
19 ffvelcdm 7020 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹:𝑍⟶(ℂ ↑m 𝑆) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
2016, 18, 19syl2an 596 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
21 elmapi 8779 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
2220, 21syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘):𝑆⟶ℂ)
2322feqmptd 6896 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) = (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)))
2418adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → 𝑘𝑍)
25 fveq2 6828 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
2625fveq1d 6830 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑘 → ((𝐹𝑛)‘𝑧) = ((𝐹𝑘)‘𝑧))
27 eqid 2733 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))
28 fvex 6841 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑘)‘𝑧) ∈ V
2926, 27, 28fvmpt 6935 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘𝑍 → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
3024, 29syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
3130mpteq2dv 5187 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑧𝑆 ↦ ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘)) = (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)))
3223, 31eqtr4d 2771 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) = (𝑧𝑆 ↦ ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘)))
3312, 14, 32seqof 13968 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑍) → (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
341adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧𝑆) → 𝑁 ∈ ℤ)
3515ffvelcdmda 7023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (ℂ ↑m 𝑆))
36 elmapi 8779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝑛) ∈ (ℂ ↑m 𝑆) → (𝐹𝑛):𝑆⟶ℂ)
3735, 36syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑛𝑍) → (𝐹𝑛):𝑆⟶ℂ)
3837ffvelcdmda 7023 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑛𝑍) ∧ 𝑧𝑆) → ((𝐹𝑛)‘𝑧) ∈ ℂ)
3938an32s 652 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝑆) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑧) ∈ ℂ)
4039fmpttd 7054 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧𝑆) → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)):𝑍⟶ℂ)
4140ffvelcdmda 7023 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ 𝑖𝑍) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑖) ∈ ℂ)
423, 34, 41serf 13939 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑆) → seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))):𝑍⟶ℂ)
4342ffvelcdmda 7023 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ 𝑖𝑍) → (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ ℂ)
4443an32s 652 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖𝑍) ∧ 𝑧𝑆) → (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ ℂ)
4544fmpttd 7054 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)):𝑆⟶ℂ)
46 cnex 11094 . . . . . . . . . . . . . . . . . . . . 21 ℂ ∈ V
47 elmapg 8769 . . . . . . . . . . . . . . . . . . . . 21 ((ℂ ∈ V ∧ 𝑆 ∈ V) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ∈ (ℂ ↑m 𝑆) ↔ (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)):𝑆⟶ℂ))
4846, 12, 47sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ∈ (ℂ ↑m 𝑆) ↔ (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)):𝑆⟶ℂ))
4945, 48mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑍) → (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ∈ (ℂ ↑m 𝑆))
5033, 49eqeltrd 2833 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝑍) → (seq𝑁( ∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆))
5150ralrimiva 3125 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑖𝑍 (seq𝑁( ∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆))
52 ffnfv 7058 . . . . . . . . . . . . . . . . 17 (seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆) ↔ (seq𝑁( ∘f + , 𝐹) Fn 𝑍 ∧ ∀𝑖𝑍 (seq𝑁( ∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆)))
539, 51, 52sylanbrc 583 . . . . . . . . . . . . . . . 16 (𝜑 → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆))
5453ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆))
553uztrn2 12757 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑖 ∈ (ℤ𝑗)) → 𝑖𝑍)
5655adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑖𝑍)
5754, 56ffvelcdmd 7024 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆))
58 elmapi 8779 . . . . . . . . . . . . . 14 ((seq𝑁( ∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆) → (seq𝑁( ∘f + , 𝐹)‘𝑖):𝑆⟶ℂ)
5957, 58syl 17 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑖):𝑆⟶ℂ)
6059ffvelcdmda 7023 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) ∈ ℂ)
61 simprl 770 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗𝑍)
6254, 61ffvelcdmd 7024 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑗) ∈ (ℂ ↑m 𝑆))
63 elmapi 8779 . . . . . . . . . . . . . 14 ((seq𝑁( ∘f + , 𝐹)‘𝑗) ∈ (ℂ ↑m 𝑆) → (seq𝑁( ∘f + , 𝐹)‘𝑗):𝑆⟶ℂ)
6462, 63syl 17 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑗):𝑆⟶ℂ)
6564ffvelcdmda 7023 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧) ∈ ℂ)
6660, 65subcld 11479 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧)) ∈ ℂ)
6766abscld 15348 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ∈ ℝ)
68 fzfid 13882 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((𝑗 + 1)...𝑖) ∈ Fin)
69 ssun2 4128 . . . . . . . . . . . . . . . 16 ((𝑗 + 1)...𝑖) ⊆ ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖))
7061, 3eleqtrdi 2843 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 ∈ (ℤ𝑁))
71 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑖 ∈ (ℤ𝑗))
72 elfzuzb 13420 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (𝑁...𝑖) ↔ (𝑗 ∈ (ℤ𝑁) ∧ 𝑖 ∈ (ℤ𝑗)))
7370, 71, 72sylanbrc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 ∈ (𝑁...𝑖))
74 fzsplit 13452 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (𝑁...𝑖) → (𝑁...𝑖) = ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖)))
7573, 74syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (𝑁...𝑖) = ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖)))
7669, 75sseqtrrid 3974 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((𝑗 + 1)...𝑖) ⊆ (𝑁...𝑖))
7776sselda 3930 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 𝑘 ∈ (𝑁...𝑖))
7877adantlr 715 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 𝑘 ∈ (𝑁...𝑖))
7915ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
8079, 18, 19syl2an 596 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
8180, 21syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘):𝑆⟶ℂ)
8281ffvelcdmda 7023 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
8382an32s 652 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑖)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
8478, 83syldan 591 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
8584abscld 15348 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
8668, 85fsumrecl 15643 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
87 mtest.c . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℝ)
883, 1, 87serfre 13940 . . . . . . . . . . . . . . . 16 (𝜑 → seq𝑁( + , 𝑀):𝑍⟶ℝ)
8988ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → seq𝑁( + , 𝑀):𝑍⟶ℝ)
9089, 56ffvelcdmd 7024 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( + , 𝑀)‘𝑖) ∈ ℝ)
9189, 61ffvelcdmd 7024 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( + , 𝑀)‘𝑗) ∈ ℝ)
9290, 91resubcld 11552 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)) ∈ ℝ)
9392recnd 11147 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)) ∈ ℂ)
9493abscld 15348 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∈ ℝ)
9594adantr 480 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∈ ℝ)
9655, 33sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
9796adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
9897fveq1d 6830 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) = ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))‘𝑧))
99 fvex 6841 . . . . . . . . . . . . . . . 16 (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ V
100 eqid 2733 . . . . . . . . . . . . . . . . 17 (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
101100fvmpt2 6946 . . . . . . . . . . . . . . . 16 ((𝑧𝑆 ∧ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ V) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
10299, 101mpan2 691 . . . . . . . . . . . . . . 15 (𝑧𝑆 → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
10398, 102sylan9eq 2788 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
104 fveq2 6828 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (seq𝑁( ∘f + , 𝐹)‘𝑖) = (seq𝑁( ∘f + , 𝐹)‘𝑗))
105 fveq2 6828 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
106105mpteq2dv 5187 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
107104, 106eqeq12d 2749 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → ((seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ↔ (seq𝑁( ∘f + , 𝐹)‘𝑗) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))))
10833ralrimiva 3125 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑖𝑍 (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
109108ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ∀𝑖𝑍 (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
110107, 109, 61rspcdva 3574 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑗) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
111110fveq1d 6830 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧) = ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))‘𝑧))
112 fvex 6841 . . . . . . . . . . . . . . . 16 (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗) ∈ V
113 eqid 2733 . . . . . . . . . . . . . . . . 17 (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
114113fvmpt2 6946 . . . . . . . . . . . . . . . 16 ((𝑧𝑆 ∧ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗) ∈ V) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
115112, 114mpan2 691 . . . . . . . . . . . . . . 15 (𝑧𝑆 → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
116111, 115sylan9eq 2788 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
117103, 116oveq12d 7370 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧)) = ((seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) − (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
11818adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑖)) → 𝑘𝑍)
119118, 29syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑖)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
12056adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑖𝑍)
121120, 3eleqtrdi 2843 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑖 ∈ (ℤ𝑁))
122119, 121, 83fsumser 15639 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
123 elfzuz 13422 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (𝑁...𝑗) → 𝑘 ∈ (ℤ𝑁))
124123, 3eleqtrrdi 2844 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑁...𝑗) → 𝑘𝑍)
125124adantl 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑗)) → 𝑘𝑍)
126125, 29syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑗)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
12761adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑗𝑍)
128127, 3eleqtrdi 2843 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑗 ∈ (ℤ𝑁))
12979, 124, 19syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
130129, 21syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘):𝑆⟶ℂ)
131130ffvelcdmda 7023 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
132131an32s 652 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑗)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
133126, 128, 132fsumser 15639 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
134122, 133oveq12d 7370 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) − Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧)) = ((seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) − (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
135 fzfid 13882 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (𝑁...𝑗) ∈ Fin)
136135, 132fsumcl 15642 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧) ∈ ℂ)
13768, 84fsumcl 15642 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧) ∈ ℂ)
138 eluzelre 12749 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (ℤ𝑁) → 𝑗 ∈ ℝ)
13970, 138syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 ∈ ℝ)
140139ltp1d 12059 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 < (𝑗 + 1))
141 fzdisj 13453 . . . . . . . . . . . . . . . . 17 (𝑗 < (𝑗 + 1) → ((𝑁...𝑗) ∩ ((𝑗 + 1)...𝑖)) = ∅)
142140, 141syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((𝑁...𝑗) ∩ ((𝑗 + 1)...𝑖)) = ∅)
143142adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((𝑁...𝑗) ∩ ((𝑗 + 1)...𝑖)) = ∅)
14475adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (𝑁...𝑖) = ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖)))
145 fzfid 13882 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (𝑁...𝑖) ∈ Fin)
146143, 144, 145, 83fsumsplit 15650 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) = (Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧)))
147136, 137, 146mvrladdd 11537 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) − Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧))
148117, 134, 1473eqtr2d 2774 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧))
149148fveq2d 6832 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) = (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧)))
15068, 84fsumabs 15710 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧)) ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)))
151149, 150eqbrtrd 5115 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)))
152 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝜑)
153152, 18, 87syl2an 596 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑀𝑘) ∈ ℝ)
15477, 153syldan 591 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (𝑀𝑘) ∈ ℝ)
155154adantlr 715 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (𝑀𝑘) ∈ ℝ)
15678, 18syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 𝑘𝑍)
157 mtest.l . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
158157ad4ant14 752 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
159158anass1rs 655 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘𝑍) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
160156, 159syldan 591 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
16168, 85, 155, 160fsumle 15708 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)) ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
162 eqidd 2734 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑀𝑘) = (𝑀𝑘))
16356, 3eleqtrdi 2843 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑖 ∈ (ℤ𝑁))
164153recnd 11147 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑀𝑘) ∈ ℂ)
165162, 163, 164fsumser 15639 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) = (seq𝑁( + , 𝑀)‘𝑖))
166 eqidd 2734 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝑀𝑘) = (𝑀𝑘))
167152, 124, 87syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝑀𝑘) ∈ ℝ)
168167recnd 11147 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝑀𝑘) ∈ ℂ)
169166, 70, 168fsumser 15639 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘) = (seq𝑁( + , 𝑀)‘𝑗))
170165, 169oveq12d 7370 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) − Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘)) = ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)))
171 fzfid 13882 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (𝑁...𝑗) ∈ Fin)
172171, 168fsumcl 15642 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘) ∈ ℂ)
173 fzfid 13882 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((𝑗 + 1)...𝑖) ∈ Fin)
17477, 164syldan 591 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (𝑀𝑘) ∈ ℂ)
175173, 174fsumcl 15642 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘) ∈ ℂ)
176 fzfid 13882 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (𝑁...𝑖) ∈ Fin)
177142, 75, 176, 164fsumsplit 15650 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) = (Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)))
178172, 175, 177mvrladdd 11537 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) − Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
179170, 178eqtr3d 2770 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
180179fveq2d 6832 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) = (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)))
181180adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) = (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)))
182179, 92eqeltrrd 2834 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘) ∈ ℝ)
183182adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘) ∈ ℝ)
184 0red 11122 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 0 ∈ ℝ)
18584absge0d 15356 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 0 ≤ (abs‘((𝐹𝑘)‘𝑧)))
186184, 85, 155, 185, 160letrd 11277 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 0 ≤ (𝑀𝑘))
18768, 155, 186fsumge0 15704 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 0 ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
188183, 187absidd 15332 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
189181, 188eqtrd 2768 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
190161, 189breqtrrd 5121 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))))
19167, 86, 95, 151, 190letrd 11277 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))))
192 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑟 ∈ ℝ+)
193192rpred 12936 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑟 ∈ ℝ)
194 lelttr 11210 . . . . . . . . . 10 (((abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ∈ ℝ ∧ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∈ ℝ ∧ 𝑟 ∈ ℝ) → (((abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∧ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
19567, 95, 193, 194syl3anc 1373 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∧ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
196191, 195mpand 695 . . . . . . . 8 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
197196ralrimdva 3133 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
198197anassrs 467 . . . . . 6 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
199198ralimdva 3145 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
200199reximdva 3146 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∃𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
201200ralimdva 3145 . . 3 (𝜑 → (∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
2025, 201mpd 15 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟)
2033, 1, 10, 53ulmcau 26332 . 2 (𝜑 → (seq𝑁( ∘f + , 𝐹) ∈ dom (⇝𝑢𝑆) ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
204202, 203mpbird 257 1 (𝜑 → seq𝑁( ∘f + , 𝐹) ∈ dom (⇝𝑢𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  Vcvv 3437  cun 3896  cin 3897  c0 4282   class class class wbr 5093  cmpt 5174  dom cdm 5619   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  f cof 7614  m cmap 8756  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   < clt 11153  cle 11154  cmin 11351  cz 12475  cuz 12738  +crp 12892  ...cfz 13409  seqcseq 13910  abscabs 15143  cli 15393  Σcsu 15595  𝑢culm 26313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-ico 13253  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-limsup 15380  df-clim 15397  df-rlim 15398  df-sum 15596  df-ulm 26314
This theorem is referenced by:  pserulm  26359  lgamgulmlem6  26972  knoppcnlem6  36563
  Copyright terms: Public domain W3C validator