Step | Hyp | Ref
| Expression |
1 | | mtest.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℤ) |
2 | | mtest.d |
. . . 4
⊢ (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ ) |
3 | | mtest.z |
. . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑁) |
4 | 3 | climcau 15380 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ seq𝑁( + , 𝑀) ∈ dom ⇝ ) → ∀𝑟 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟) |
5 | 1, 2, 4 | syl2anc 584 |
. . 3
⊢ (𝜑 → ∀𝑟 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟) |
6 | | seqfn 13731 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℤ → seq𝑁( ∘f + , 𝐹) Fn
(ℤ≥‘𝑁)) |
7 | 1, 6 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → seq𝑁( ∘f + , 𝐹) Fn (ℤ≥‘𝑁)) |
8 | 3 | fneq2i 6529 |
. . . . . . . . . . . . . . . . . 18
⊢ (seq𝑁( ∘f + , 𝐹) Fn 𝑍 ↔ seq𝑁( ∘f + , 𝐹) Fn (ℤ≥‘𝑁)) |
9 | 7, 8 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → seq𝑁( ∘f + , 𝐹) Fn 𝑍) |
10 | | mtest.s |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
11 | 10 | elexd 3451 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑆 ∈ V) |
12 | 11 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝑆 ∈ V) |
13 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝑖 ∈ 𝑍) |
14 | 13, 3 | eleqtrdi 2851 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝑖 ∈ (ℤ≥‘𝑁)) |
15 | | mtest.f |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
16 | 15 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
17 | | elfzuz 13251 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (𝑁...𝑖) → 𝑘 ∈ (ℤ≥‘𝑁)) |
18 | 17, 3 | eleqtrrdi 2852 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (𝑁...𝑖) → 𝑘 ∈ 𝑍) |
19 | | ffvelrn 6956 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹:𝑍⟶(ℂ ↑m 𝑆) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑆)) |
20 | 16, 18, 19 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑆)) |
21 | | elmapi 8620 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐹‘𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹‘𝑘):𝑆⟶ℂ) |
22 | 20, 21 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹‘𝑘):𝑆⟶ℂ) |
23 | 22 | feqmptd 6834 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹‘𝑘) = (𝑧 ∈ 𝑆 ↦ ((𝐹‘𝑘)‘𝑧))) |
24 | 18 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → 𝑘 ∈ 𝑍) |
25 | | fveq2 6771 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
26 | 25 | fveq1d 6773 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 = 𝑘 → ((𝐹‘𝑛)‘𝑧) = ((𝐹‘𝑘)‘𝑧)) |
27 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)) = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)) |
28 | | fvex 6784 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹‘𝑘)‘𝑧) ∈ V |
29 | 26, 27, 28 | fvmpt 6872 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ 𝑍 → ((𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧))‘𝑘) = ((𝐹‘𝑘)‘𝑧)) |
30 | 24, 29 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → ((𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧))‘𝑘) = ((𝐹‘𝑘)‘𝑧)) |
31 | 30 | mpteq2dv 5181 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑧 ∈ 𝑆 ↦ ((𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧))‘𝑘)) = (𝑧 ∈ 𝑆 ↦ ((𝐹‘𝑘)‘𝑧))) |
32 | 23, 31 | eqtr4d 2783 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹‘𝑘) = (𝑧 ∈ 𝑆 ↦ ((𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧))‘𝑘))) |
33 | 12, 14, 32 | seqof 13778 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖))) |
34 | 1 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝑁 ∈ ℤ) |
35 | 15 | ffvelrnda 6958 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ (ℂ ↑m 𝑆)) |
36 | | elmapi 8620 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐹‘𝑛) ∈ (ℂ ↑m 𝑆) → (𝐹‘𝑛):𝑆⟶ℂ) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛):𝑆⟶ℂ) |
38 | 37 | ffvelrnda 6958 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → ((𝐹‘𝑛)‘𝑧) ∈ ℂ) |
39 | 38 | an32s 649 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑛 ∈ 𝑍) → ((𝐹‘𝑛)‘𝑧) ∈ ℂ) |
40 | 39 | fmpttd 6986 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)):𝑍⟶ℂ) |
41 | 40 | ffvelrnda 6958 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑖 ∈ 𝑍) → ((𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧))‘𝑖) ∈ ℂ) |
42 | 3, 34, 41 | serf 13749 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧))):𝑍⟶ℂ) |
43 | 42 | ffvelrnda 6958 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑖 ∈ 𝑍) → (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖) ∈ ℂ) |
44 | 43 | an32s 649 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑧 ∈ 𝑆) → (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖) ∈ ℂ) |
45 | 44 | fmpttd 6986 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖)):𝑆⟶ℂ) |
46 | | cnex 10953 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℂ
∈ V |
47 | | elmapg 8611 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℂ
∈ V ∧ 𝑆 ∈ V)
→ ((𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖)) ∈ (ℂ ↑m 𝑆) ↔ (𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖)):𝑆⟶ℂ)) |
48 | 46, 12, 47 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖)) ∈ (ℂ ↑m 𝑆) ↔ (𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖)):𝑆⟶ℂ)) |
49 | 45, 48 | mpbird 256 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖)) ∈ (ℂ ↑m 𝑆)) |
50 | 33, 49 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (seq𝑁( ∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆)) |
51 | 50 | ralrimiva 3110 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑖 ∈ 𝑍 (seq𝑁( ∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆)) |
52 | | ffnfv 6989 |
. . . . . . . . . . . . . . . . 17
⊢ (seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆) ↔ (seq𝑁( ∘f + , 𝐹) Fn 𝑍 ∧ ∀𝑖 ∈ 𝑍 (seq𝑁( ∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆))) |
53 | 9, 51, 52 | sylanbrc 583 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆)) |
54 | 53 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆)) |
55 | 3 | uztrn2 12600 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → 𝑖 ∈ 𝑍) |
56 | 55 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → 𝑖 ∈ 𝑍) |
57 | 54, 56 | ffvelrnd 6959 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆)) |
58 | | elmapi 8620 |
. . . . . . . . . . . . . 14
⊢
((seq𝑁(
∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆) → (seq𝑁( ∘f + , 𝐹)‘𝑖):𝑆⟶ℂ) |
59 | 57, 58 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑖):𝑆⟶ℂ) |
60 | 59 | ffvelrnda 6958 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) ∈ ℂ) |
61 | | simprl 768 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ 𝑍) |
62 | 54, 61 | ffvelrnd 6959 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑗) ∈ (ℂ ↑m 𝑆)) |
63 | | elmapi 8620 |
. . . . . . . . . . . . . 14
⊢
((seq𝑁(
∘f + , 𝐹)‘𝑗) ∈ (ℂ ↑m 𝑆) → (seq𝑁( ∘f + , 𝐹)‘𝑗):𝑆⟶ℂ) |
64 | 62, 63 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑗):𝑆⟶ℂ) |
65 | 64 | ffvelrnda 6958 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧) ∈ ℂ) |
66 | 60, 65 | subcld 11332 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → (((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧)) ∈ ℂ) |
67 | 66 | abscld 15146 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ∈ ℝ) |
68 | | fzfid 13691 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → ((𝑗 + 1)...𝑖) ∈ Fin) |
69 | | ssun2 4112 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 + 1)...𝑖) ⊆ ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖)) |
70 | 61, 3 | eleqtrdi 2851 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ (ℤ≥‘𝑁)) |
71 | | simprr 770 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → 𝑖 ∈ (ℤ≥‘𝑗)) |
72 | | elfzuzb 13249 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (𝑁...𝑖) ↔ (𝑗 ∈ (ℤ≥‘𝑁) ∧ 𝑖 ∈ (ℤ≥‘𝑗))) |
73 | 70, 71, 72 | sylanbrc 583 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ (𝑁...𝑖)) |
74 | | fzsplit 13281 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (𝑁...𝑖) → (𝑁...𝑖) = ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖))) |
75 | 73, 74 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → (𝑁...𝑖) = ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖))) |
76 | 69, 75 | sseqtrrid 3979 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → ((𝑗 + 1)...𝑖) ⊆ (𝑁...𝑖)) |
77 | 76 | sselda 3926 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 𝑘 ∈ (𝑁...𝑖)) |
78 | 77 | adantlr 712 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 𝑘 ∈ (𝑁...𝑖)) |
79 | 15 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → 𝐹:𝑍⟶(ℂ ↑m 𝑆)) |
80 | 79, 18, 19 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑆)) |
81 | 80, 21 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹‘𝑘):𝑆⟶ℂ) |
82 | 81 | ffvelrnda 6958 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) ∧ 𝑧 ∈ 𝑆) → ((𝐹‘𝑘)‘𝑧) ∈ ℂ) |
83 | 82 | an32s 649 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑖)) → ((𝐹‘𝑘)‘𝑧) ∈ ℂ) |
84 | 78, 83 | syldan 591 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → ((𝐹‘𝑘)‘𝑧) ∈ ℂ) |
85 | 84 | abscld 15146 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (abs‘((𝐹‘𝑘)‘𝑧)) ∈ ℝ) |
86 | 68, 85 | fsumrecl 15444 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹‘𝑘)‘𝑧)) ∈ ℝ) |
87 | | mtest.c |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑀‘𝑘) ∈ ℝ) |
88 | 3, 1, 87 | serfre 13750 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → seq𝑁( + , 𝑀):𝑍⟶ℝ) |
89 | 88 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → seq𝑁( + , 𝑀):𝑍⟶ℝ) |
90 | 89, 56 | ffvelrnd 6959 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → (seq𝑁( + , 𝑀)‘𝑖) ∈ ℝ) |
91 | 89, 61 | ffvelrnd 6959 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → (seq𝑁( + , 𝑀)‘𝑗) ∈ ℝ) |
92 | 90, 91 | resubcld 11403 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)) ∈ ℝ) |
93 | 92 | recnd 11004 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)) ∈ ℂ) |
94 | 93 | abscld 15146 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∈ ℝ) |
95 | 94 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∈ ℝ) |
96 | 55, 33 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖))) |
97 | 96 | adantlr 712 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖))) |
98 | 97 | fveq1d 6773 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → ((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) = ((𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖))‘𝑧)) |
99 | | fvex 6784 |
. . . . . . . . . . . . . . . 16
⊢ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖) ∈ V |
100 | | eqid 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖)) = (𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖)) |
101 | 100 | fvmpt2 6883 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ 𝑆 ∧ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖) ∈ V) → ((𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖))‘𝑧) = (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖)) |
102 | 99, 101 | mpan2 688 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖))‘𝑧) = (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖)) |
103 | 98, 102 | sylan9eq 2800 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) = (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖)) |
104 | | fveq2 6771 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑗 → (seq𝑁( ∘f + , 𝐹)‘𝑖) = (seq𝑁( ∘f + , 𝐹)‘𝑗)) |
105 | | fveq2 6771 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑗 → (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖) = (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑗)) |
106 | 105 | mpteq2dv 5181 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑗 → (𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖)) = (𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑗))) |
107 | 104, 106 | eqeq12d 2756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑗 → ((seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖)) ↔ (seq𝑁( ∘f + , 𝐹)‘𝑗) = (𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑗)))) |
108 | 33 | ralrimiva 3110 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑖 ∈ 𝑍 (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖))) |
109 | 108 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → ∀𝑖 ∈ 𝑍 (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖))) |
110 | 107, 109,
61 | rspcdva 3563 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑗) = (𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑗))) |
111 | 110 | fveq1d 6773 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧) = ((𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑗))‘𝑧)) |
112 | | fvex 6784 |
. . . . . . . . . . . . . . . 16
⊢ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑗) ∈ V |
113 | | eqid 2740 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑗)) = (𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑗)) |
114 | 113 | fvmpt2 6883 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ 𝑆 ∧ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑗) ∈ V) → ((𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑗))‘𝑧) = (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑗)) |
115 | 112, 114 | mpan2 688 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑆 → ((𝑧 ∈ 𝑆 ↦ (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑗))‘𝑧) = (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑗)) |
116 | 111, 115 | sylan9eq 2800 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧) = (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑗)) |
117 | 103, 116 | oveq12d 7289 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → (((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧)) = ((seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖) − (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑗))) |
118 | 18 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑖)) → 𝑘 ∈ 𝑍) |
119 | 118, 29 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑖)) → ((𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧))‘𝑘) = ((𝐹‘𝑘)‘𝑧)) |
120 | 56 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → 𝑖 ∈ 𝑍) |
121 | 120, 3 | eleqtrdi 2851 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → 𝑖 ∈ (ℤ≥‘𝑁)) |
122 | 119, 121,
83 | fsumser 15440 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑖)((𝐹‘𝑘)‘𝑧) = (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖)) |
123 | | elfzuz 13251 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (𝑁...𝑗) → 𝑘 ∈ (ℤ≥‘𝑁)) |
124 | 123, 3 | eleqtrrdi 2852 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (𝑁...𝑗) → 𝑘 ∈ 𝑍) |
125 | 124 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑗)) → 𝑘 ∈ 𝑍) |
126 | 125, 29 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑗)) → ((𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧))‘𝑘) = ((𝐹‘𝑘)‘𝑧)) |
127 | 61 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → 𝑗 ∈ 𝑍) |
128 | 127, 3 | eleqtrdi 2851 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → 𝑗 ∈ (ℤ≥‘𝑁)) |
129 | 79, 124, 19 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹‘𝑘) ∈ (ℂ ↑m 𝑆)) |
130 | 129, 21 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹‘𝑘):𝑆⟶ℂ) |
131 | 130 | ffvelrnda 6958 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) ∧ 𝑧 ∈ 𝑆) → ((𝐹‘𝑘)‘𝑧) ∈ ℂ) |
132 | 131 | an32s 649 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ (𝑁...𝑗)) → ((𝐹‘𝑘)‘𝑧) ∈ ℂ) |
133 | 126, 128,
132 | fsumser 15440 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑗)((𝐹‘𝑘)‘𝑧) = (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑗)) |
134 | 122, 133 | oveq12d 7289 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → (Σ𝑘 ∈ (𝑁...𝑖)((𝐹‘𝑘)‘𝑧) − Σ𝑘 ∈ (𝑁...𝑗)((𝐹‘𝑘)‘𝑧)) = ((seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑖) − (seq𝑁( + , (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑧)))‘𝑗))) |
135 | | fzfid 13691 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → (𝑁...𝑗) ∈ Fin) |
136 | 135, 132 | fsumcl 15443 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑗)((𝐹‘𝑘)‘𝑧) ∈ ℂ) |
137 | 68, 84 | fsumcl 15443 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹‘𝑘)‘𝑧) ∈ ℂ) |
138 | | eluzelre 12592 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈
(ℤ≥‘𝑁) → 𝑗 ∈ ℝ) |
139 | 70, 138 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → 𝑗 ∈ ℝ) |
140 | 139 | ltp1d 11905 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → 𝑗 < (𝑗 + 1)) |
141 | | fzdisj 13282 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 < (𝑗 + 1) → ((𝑁...𝑗) ∩ ((𝑗 + 1)...𝑖)) = ∅) |
142 | 140, 141 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → ((𝑁...𝑗) ∩ ((𝑗 + 1)...𝑖)) = ∅) |
143 | 142 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → ((𝑁...𝑗) ∩ ((𝑗 + 1)...𝑖)) = ∅) |
144 | 75 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → (𝑁...𝑖) = ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖))) |
145 | | fzfid 13691 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → (𝑁...𝑖) ∈ Fin) |
146 | 143, 144,
145, 83 | fsumsplit 15451 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ (𝑁...𝑖)((𝐹‘𝑘)‘𝑧) = (Σ𝑘 ∈ (𝑁...𝑗)((𝐹‘𝑘)‘𝑧) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹‘𝑘)‘𝑧))) |
147 | 136, 137,
146 | mvrladdd 11388 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → (Σ𝑘 ∈ (𝑁...𝑖)((𝐹‘𝑘)‘𝑧) − Σ𝑘 ∈ (𝑁...𝑗)((𝐹‘𝑘)‘𝑧)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹‘𝑘)‘𝑧)) |
148 | 117, 134,
147 | 3eqtr2d 2786 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → (((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹‘𝑘)‘𝑧)) |
149 | 148 | fveq2d 6775 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) = (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹‘𝑘)‘𝑧))) |
150 | 68, 84 | fsumabs 15511 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹‘𝑘)‘𝑧)) ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹‘𝑘)‘𝑧))) |
151 | 149, 150 | eqbrtrd 5101 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹‘𝑘)‘𝑧))) |
152 | | simpll 764 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → 𝜑) |
153 | 152, 18, 87 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑀‘𝑘) ∈ ℝ) |
154 | 77, 153 | syldan 591 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (𝑀‘𝑘) ∈ ℝ) |
155 | 154 | adantlr 712 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (𝑀‘𝑘) ∈ ℝ) |
156 | 78, 18 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 𝑘 ∈ 𝑍) |
157 | | mtest.l |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → (abs‘((𝐹‘𝑘)‘𝑧)) ≤ (𝑀‘𝑘)) |
158 | 157 | ad4ant14 749 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ (𝑘 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆)) → (abs‘((𝐹‘𝑘)‘𝑧)) ≤ (𝑀‘𝑘)) |
159 | 158 | anass1rs 652 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ 𝑍) → (abs‘((𝐹‘𝑘)‘𝑧)) ≤ (𝑀‘𝑘)) |
160 | 156, 159 | syldan 591 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (abs‘((𝐹‘𝑘)‘𝑧)) ≤ (𝑀‘𝑘)) |
161 | 68, 85, 155, 160 | fsumle 15509 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹‘𝑘)‘𝑧)) ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀‘𝑘)) |
162 | | eqidd 2741 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑀‘𝑘) = (𝑀‘𝑘)) |
163 | 56, 3 | eleqtrdi 2851 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → 𝑖 ∈ (ℤ≥‘𝑁)) |
164 | 153 | recnd 11004 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑀‘𝑘) ∈ ℂ) |
165 | 162, 163,
164 | fsumser 15440 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑁...𝑖)(𝑀‘𝑘) = (seq𝑁( + , 𝑀)‘𝑖)) |
166 | | eqidd 2741 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝑀‘𝑘) = (𝑀‘𝑘)) |
167 | 152, 124,
87 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝑀‘𝑘) ∈ ℝ) |
168 | 167 | recnd 11004 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝑀‘𝑘) ∈ ℂ) |
169 | 166, 70, 168 | fsumser 15440 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑁...𝑗)(𝑀‘𝑘) = (seq𝑁( + , 𝑀)‘𝑗)) |
170 | 165, 169 | oveq12d 7289 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → (Σ𝑘 ∈ (𝑁...𝑖)(𝑀‘𝑘) − Σ𝑘 ∈ (𝑁...𝑗)(𝑀‘𝑘)) = ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) |
171 | | fzfid 13691 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → (𝑁...𝑗) ∈ Fin) |
172 | 171, 168 | fsumcl 15443 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑁...𝑗)(𝑀‘𝑘) ∈ ℂ) |
173 | | fzfid 13691 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → ((𝑗 + 1)...𝑖) ∈ Fin) |
174 | 77, 164 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (𝑀‘𝑘) ∈ ℂ) |
175 | 173, 174 | fsumcl 15443 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀‘𝑘) ∈ ℂ) |
176 | | fzfid 13691 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → (𝑁...𝑖) ∈ Fin) |
177 | 142, 75, 176, 164 | fsumsplit 15451 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ (𝑁...𝑖)(𝑀‘𝑘) = (Σ𝑘 ∈ (𝑁...𝑗)(𝑀‘𝑘) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀‘𝑘))) |
178 | 172, 175,
177 | mvrladdd 11388 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → (Σ𝑘 ∈ (𝑁...𝑖)(𝑀‘𝑘) − Σ𝑘 ∈ (𝑁...𝑗)(𝑀‘𝑘)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀‘𝑘)) |
179 | 170, 178 | eqtr3d 2782 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀‘𝑘)) |
180 | 179 | fveq2d 6775 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) = (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀‘𝑘))) |
181 | 180 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) = (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀‘𝑘))) |
182 | 179, 92 | eqeltrrd 2842 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀‘𝑘) ∈ ℝ) |
183 | 182 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀‘𝑘) ∈ ℝ) |
184 | | 0red 10979 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 0 ∈ ℝ) |
185 | 84 | absge0d 15154 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 0 ≤ (abs‘((𝐹‘𝑘)‘𝑧))) |
186 | 184, 85, 155, 185, 160 | letrd 11132 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑟 ∈ ℝ+)
∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 0 ≤ (𝑀‘𝑘)) |
187 | 68, 155, 186 | fsumge0 15505 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → 0 ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀‘𝑘)) |
188 | 183, 187 | absidd 15132 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀‘𝑘)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀‘𝑘)) |
189 | 181, 188 | eqtrd 2780 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀‘𝑘)) |
190 | 161, 189 | breqtrrd 5107 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹‘𝑘)‘𝑧)) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)))) |
191 | 67, 86, 95, 151, 190 | letrd 11132 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)))) |
192 | | simpllr 773 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → 𝑟 ∈ ℝ+) |
193 | 192 | rpred 12771 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → 𝑟 ∈ ℝ) |
194 | | lelttr 11066 |
. . . . . . . . . 10
⊢
(((abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ∈ ℝ ∧
(abs‘((seq𝑁( + ,
𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∈ ℝ ∧ 𝑟 ∈ ℝ) →
(((abs‘(((seq𝑁(
∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∧ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟)) |
195 | 67, 95, 193, 194 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → (((abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∧ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟)) |
196 | 191, 195 | mpand 692 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) ∧ 𝑧 ∈ 𝑆) → ((abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟)) |
197 | 196 | ralrimdva 3115 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ (𝑗 ∈ 𝑍 ∧ 𝑖 ∈ (ℤ≥‘𝑗))) →
((abs‘((seq𝑁( + ,
𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑧 ∈ 𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟)) |
198 | 197 | anassrs 468 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) ∧ 𝑖 ∈ (ℤ≥‘𝑗)) → ((abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑧 ∈ 𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟)) |
199 | 198 | ralimdva 3105 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑗 ∈ 𝑍) → (∀𝑖 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑖 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟)) |
200 | 199 | reximdva 3205 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
(∃𝑗 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∃𝑗 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟)) |
201 | 200 | ralimdva 3105 |
. . 3
⊢ (𝜑 → (∀𝑟 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑟 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟)) |
202 | 5, 201 | mpd 15 |
. 2
⊢ (𝜑 → ∀𝑟 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟) |
203 | 3, 1, 10, 53 | ulmcau 25552 |
. 2
⊢ (𝜑 → (seq𝑁( ∘f + , 𝐹) ∈ dom
(⇝𝑢‘𝑆) ↔ ∀𝑟 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟)) |
204 | 202, 203 | mpbird 256 |
1
⊢ (𝜑 → seq𝑁( ∘f + , 𝐹) ∈ dom
(⇝𝑢‘𝑆)) |