MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mtest Structured version   Visualization version   GIF version

Theorem mtest 25763
Description: The Weierstrass M-test. If 𝐹 is a sequence of functions which are uniformly bounded by the convergent sequence 𝑀(𝑘), then the series generated by the sequence 𝐹 converges uniformly. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
mtest.z 𝑍 = (ℤ𝑁)
mtest.n (𝜑𝑁 ∈ ℤ)
mtest.s (𝜑𝑆𝑉)
mtest.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
mtest.m (𝜑𝑀𝑊)
mtest.c ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℝ)
mtest.l ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
mtest.d (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ )
Assertion
Ref Expression
mtest (𝜑 → seq𝑁( ∘f + , 𝐹) ∈ dom (⇝𝑢𝑆))
Distinct variable groups:   𝑧,𝑘,𝐹   𝑘,𝑀,𝑧   𝑘,𝑁,𝑧   𝜑,𝑘,𝑧   𝑘,𝑍,𝑧   𝑆,𝑘,𝑧
Allowed substitution hints:   𝑉(𝑧,𝑘)   𝑊(𝑧,𝑘)

Proof of Theorem mtest
Dummy variables 𝑖 𝑗 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mtest.n . . . 4 (𝜑𝑁 ∈ ℤ)
2 mtest.d . . . 4 (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ )
3 mtest.z . . . . 5 𝑍 = (ℤ𝑁)
43climcau 15555 . . . 4 ((𝑁 ∈ ℤ ∧ seq𝑁( + , 𝑀) ∈ dom ⇝ ) → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟)
51, 2, 4syl2anc 584 . . 3 (𝜑 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟)
6 seqfn 13918 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → seq𝑁( ∘f + , 𝐹) Fn (ℤ𝑁))
71, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → seq𝑁( ∘f + , 𝐹) Fn (ℤ𝑁))
83fneq2i 6600 . . . . . . . . . . . . . . . . . 18 (seq𝑁( ∘f + , 𝐹) Fn 𝑍 ↔ seq𝑁( ∘f + , 𝐹) Fn (ℤ𝑁))
97, 8sylibr 233 . . . . . . . . . . . . . . . . 17 (𝜑 → seq𝑁( ∘f + , 𝐹) Fn 𝑍)
10 mtest.s . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑆𝑉)
1110elexd 3465 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ∈ V)
1211adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → 𝑆 ∈ V)
13 simpr 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝑍) → 𝑖𝑍)
1413, 3eleqtrdi 2848 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → 𝑖 ∈ (ℤ𝑁))
15 mtest.f . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
1615adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖𝑍) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
17 elfzuz 13437 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (𝑁...𝑖) → 𝑘 ∈ (ℤ𝑁))
1817, 3eleqtrrdi 2849 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (𝑁...𝑖) → 𝑘𝑍)
19 ffvelcdm 7032 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹:𝑍⟶(ℂ ↑m 𝑆) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
2016, 18, 19syl2an 596 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
21 elmapi 8787 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑘) ∈ (ℂ ↑m 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
2220, 21syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘):𝑆⟶ℂ)
2322feqmptd 6910 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) = (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)))
2418adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → 𝑘𝑍)
25 fveq2 6842 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
2625fveq1d 6844 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑘 → ((𝐹𝑛)‘𝑧) = ((𝐹𝑘)‘𝑧))
27 eqid 2736 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))
28 fvex 6855 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑘)‘𝑧) ∈ V
2926, 27, 28fvmpt 6948 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘𝑍 → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
3024, 29syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
3130mpteq2dv 5207 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑧𝑆 ↦ ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘)) = (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)))
3223, 31eqtr4d 2779 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) = (𝑧𝑆 ↦ ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘)))
3312, 14, 32seqof 13965 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑍) → (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
341adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧𝑆) → 𝑁 ∈ ℤ)
3515ffvelcdmda 7035 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (ℂ ↑m 𝑆))
36 elmapi 8787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝑛) ∈ (ℂ ↑m 𝑆) → (𝐹𝑛):𝑆⟶ℂ)
3735, 36syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑛𝑍) → (𝐹𝑛):𝑆⟶ℂ)
3837ffvelcdmda 7035 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑛𝑍) ∧ 𝑧𝑆) → ((𝐹𝑛)‘𝑧) ∈ ℂ)
3938an32s 650 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝑆) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑧) ∈ ℂ)
4039fmpttd 7063 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧𝑆) → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)):𝑍⟶ℂ)
4140ffvelcdmda 7035 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ 𝑖𝑍) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑖) ∈ ℂ)
423, 34, 41serf 13936 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑆) → seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))):𝑍⟶ℂ)
4342ffvelcdmda 7035 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ 𝑖𝑍) → (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ ℂ)
4443an32s 650 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖𝑍) ∧ 𝑧𝑆) → (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ ℂ)
4544fmpttd 7063 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)):𝑆⟶ℂ)
46 cnex 11132 . . . . . . . . . . . . . . . . . . . . 21 ℂ ∈ V
47 elmapg 8778 . . . . . . . . . . . . . . . . . . . . 21 ((ℂ ∈ V ∧ 𝑆 ∈ V) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ∈ (ℂ ↑m 𝑆) ↔ (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)):𝑆⟶ℂ))
4846, 12, 47sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ∈ (ℂ ↑m 𝑆) ↔ (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)):𝑆⟶ℂ))
4945, 48mpbird 256 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑍) → (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ∈ (ℂ ↑m 𝑆))
5033, 49eqeltrd 2838 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝑍) → (seq𝑁( ∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆))
5150ralrimiva 3143 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑖𝑍 (seq𝑁( ∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆))
52 ffnfv 7066 . . . . . . . . . . . . . . . . 17 (seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆) ↔ (seq𝑁( ∘f + , 𝐹) Fn 𝑍 ∧ ∀𝑖𝑍 (seq𝑁( ∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆)))
539, 51, 52sylanbrc 583 . . . . . . . . . . . . . . . 16 (𝜑 → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆))
5453ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → seq𝑁( ∘f + , 𝐹):𝑍⟶(ℂ ↑m 𝑆))
553uztrn2 12782 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑖 ∈ (ℤ𝑗)) → 𝑖𝑍)
5655adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑖𝑍)
5754, 56ffvelcdmd 7036 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆))
58 elmapi 8787 . . . . . . . . . . . . . 14 ((seq𝑁( ∘f + , 𝐹)‘𝑖) ∈ (ℂ ↑m 𝑆) → (seq𝑁( ∘f + , 𝐹)‘𝑖):𝑆⟶ℂ)
5957, 58syl 17 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑖):𝑆⟶ℂ)
6059ffvelcdmda 7035 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) ∈ ℂ)
61 simprl 769 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗𝑍)
6254, 61ffvelcdmd 7036 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑗) ∈ (ℂ ↑m 𝑆))
63 elmapi 8787 . . . . . . . . . . . . . 14 ((seq𝑁( ∘f + , 𝐹)‘𝑗) ∈ (ℂ ↑m 𝑆) → (seq𝑁( ∘f + , 𝐹)‘𝑗):𝑆⟶ℂ)
6462, 63syl 17 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑗):𝑆⟶ℂ)
6564ffvelcdmda 7035 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧) ∈ ℂ)
6660, 65subcld 11512 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧)) ∈ ℂ)
6766abscld 15321 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ∈ ℝ)
68 fzfid 13878 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((𝑗 + 1)...𝑖) ∈ Fin)
69 ssun2 4133 . . . . . . . . . . . . . . . 16 ((𝑗 + 1)...𝑖) ⊆ ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖))
7061, 3eleqtrdi 2848 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 ∈ (ℤ𝑁))
71 simprr 771 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑖 ∈ (ℤ𝑗))
72 elfzuzb 13435 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (𝑁...𝑖) ↔ (𝑗 ∈ (ℤ𝑁) ∧ 𝑖 ∈ (ℤ𝑗)))
7370, 71, 72sylanbrc 583 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 ∈ (𝑁...𝑖))
74 fzsplit 13467 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (𝑁...𝑖) → (𝑁...𝑖) = ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖)))
7573, 74syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (𝑁...𝑖) = ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖)))
7669, 75sseqtrrid 3997 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((𝑗 + 1)...𝑖) ⊆ (𝑁...𝑖))
7776sselda 3944 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 𝑘 ∈ (𝑁...𝑖))
7877adantlr 713 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 𝑘 ∈ (𝑁...𝑖))
7915ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝐹:𝑍⟶(ℂ ↑m 𝑆))
8079, 18, 19syl2an 596 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
8180, 21syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘):𝑆⟶ℂ)
8281ffvelcdmda 7035 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
8382an32s 650 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑖)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
8478, 83syldan 591 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
8584abscld 15321 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
8668, 85fsumrecl 15619 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
87 mtest.c . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℝ)
883, 1, 87serfre 13937 . . . . . . . . . . . . . . . 16 (𝜑 → seq𝑁( + , 𝑀):𝑍⟶ℝ)
8988ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → seq𝑁( + , 𝑀):𝑍⟶ℝ)
9089, 56ffvelcdmd 7036 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( + , 𝑀)‘𝑖) ∈ ℝ)
9189, 61ffvelcdmd 7036 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( + , 𝑀)‘𝑗) ∈ ℝ)
9290, 91resubcld 11583 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)) ∈ ℝ)
9392recnd 11183 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)) ∈ ℂ)
9493abscld 15321 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∈ ℝ)
9594adantr 481 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∈ ℝ)
9655, 33sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
9796adantlr 713 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
9897fveq1d 6844 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) = ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))‘𝑧))
99 fvex 6855 . . . . . . . . . . . . . . . 16 (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ V
100 eqid 2736 . . . . . . . . . . . . . . . . 17 (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
101100fvmpt2 6959 . . . . . . . . . . . . . . . 16 ((𝑧𝑆 ∧ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ V) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
10299, 101mpan2 689 . . . . . . . . . . . . . . 15 (𝑧𝑆 → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
10398, 102sylan9eq 2796 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
104 fveq2 6842 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (seq𝑁( ∘f + , 𝐹)‘𝑖) = (seq𝑁( ∘f + , 𝐹)‘𝑗))
105 fveq2 6842 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
106105mpteq2dv 5207 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
107104, 106eqeq12d 2752 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → ((seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ↔ (seq𝑁( ∘f + , 𝐹)‘𝑗) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))))
10833ralrimiva 3143 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑖𝑍 (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
109108ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ∀𝑖𝑍 (seq𝑁( ∘f + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
110107, 109, 61rspcdva 3582 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘f + , 𝐹)‘𝑗) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
111110fveq1d 6844 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧) = ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))‘𝑧))
112 fvex 6855 . . . . . . . . . . . . . . . 16 (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗) ∈ V
113 eqid 2736 . . . . . . . . . . . . . . . . 17 (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
114113fvmpt2 6959 . . . . . . . . . . . . . . . 16 ((𝑧𝑆 ∧ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗) ∈ V) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
115112, 114mpan2 689 . . . . . . . . . . . . . . 15 (𝑧𝑆 → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
116111, 115sylan9eq 2796 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
117103, 116oveq12d 7375 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧)) = ((seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) − (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
11818adantl 482 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑖)) → 𝑘𝑍)
119118, 29syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑖)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
12056adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑖𝑍)
121120, 3eleqtrdi 2848 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑖 ∈ (ℤ𝑁))
122119, 121, 83fsumser 15615 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
123 elfzuz 13437 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (𝑁...𝑗) → 𝑘 ∈ (ℤ𝑁))
124123, 3eleqtrrdi 2849 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑁...𝑗) → 𝑘𝑍)
125124adantl 482 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑗)) → 𝑘𝑍)
126125, 29syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑗)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
12761adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑗𝑍)
128127, 3eleqtrdi 2848 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑗 ∈ (ℤ𝑁))
12979, 124, 19syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘) ∈ (ℂ ↑m 𝑆))
130129, 21syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘):𝑆⟶ℂ)
131130ffvelcdmda 7035 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
132131an32s 650 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑗)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
133126, 128, 132fsumser 15615 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
134122, 133oveq12d 7375 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) − Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧)) = ((seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) − (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
135 fzfid 13878 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (𝑁...𝑗) ∈ Fin)
136135, 132fsumcl 15618 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧) ∈ ℂ)
13768, 84fsumcl 15618 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧) ∈ ℂ)
138 eluzelre 12774 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ (ℤ𝑁) → 𝑗 ∈ ℝ)
13970, 138syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 ∈ ℝ)
140139ltp1d 12085 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 < (𝑗 + 1))
141 fzdisj 13468 . . . . . . . . . . . . . . . . 17 (𝑗 < (𝑗 + 1) → ((𝑁...𝑗) ∩ ((𝑗 + 1)...𝑖)) = ∅)
142140, 141syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((𝑁...𝑗) ∩ ((𝑗 + 1)...𝑖)) = ∅)
143142adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((𝑁...𝑗) ∩ ((𝑗 + 1)...𝑖)) = ∅)
14475adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (𝑁...𝑖) = ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖)))
145 fzfid 13878 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (𝑁...𝑖) ∈ Fin)
146143, 144, 145, 83fsumsplit 15626 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) = (Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧)))
147136, 137, 146mvrladdd 11568 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) − Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧))
148117, 134, 1473eqtr2d 2782 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧))
149148fveq2d 6846 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) = (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧)))
15068, 84fsumabs 15686 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧)) ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)))
151149, 150eqbrtrd 5127 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)))
152 simpll 765 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝜑)
153152, 18, 87syl2an 596 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑀𝑘) ∈ ℝ)
15477, 153syldan 591 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (𝑀𝑘) ∈ ℝ)
155154adantlr 713 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (𝑀𝑘) ∈ ℝ)
15678, 18syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 𝑘𝑍)
157 mtest.l . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
158157ad4ant14 750 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
159158anass1rs 653 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘𝑍) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
160156, 159syldan 591 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
16168, 85, 155, 160fsumle 15684 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)) ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
162 eqidd 2737 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑀𝑘) = (𝑀𝑘))
16356, 3eleqtrdi 2848 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑖 ∈ (ℤ𝑁))
164153recnd 11183 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑀𝑘) ∈ ℂ)
165162, 163, 164fsumser 15615 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) = (seq𝑁( + , 𝑀)‘𝑖))
166 eqidd 2737 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝑀𝑘) = (𝑀𝑘))
167152, 124, 87syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝑀𝑘) ∈ ℝ)
168167recnd 11183 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝑀𝑘) ∈ ℂ)
169166, 70, 168fsumser 15615 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘) = (seq𝑁( + , 𝑀)‘𝑗))
170165, 169oveq12d 7375 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) − Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘)) = ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)))
171 fzfid 13878 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (𝑁...𝑗) ∈ Fin)
172171, 168fsumcl 15618 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘) ∈ ℂ)
173 fzfid 13878 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((𝑗 + 1)...𝑖) ∈ Fin)
17477, 164syldan 591 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (𝑀𝑘) ∈ ℂ)
175173, 174fsumcl 15618 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘) ∈ ℂ)
176 fzfid 13878 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (𝑁...𝑖) ∈ Fin)
177142, 75, 176, 164fsumsplit 15626 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) = (Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)))
178172, 175, 177mvrladdd 11568 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) − Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
179170, 178eqtr3d 2778 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
180179fveq2d 6846 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) = (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)))
181180adantr 481 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) = (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)))
182179, 92eqeltrrd 2839 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘) ∈ ℝ)
183182adantr 481 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘) ∈ ℝ)
184 0red 11158 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 0 ∈ ℝ)
18584absge0d 15329 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 0 ≤ (abs‘((𝐹𝑘)‘𝑧)))
186184, 85, 155, 185, 160letrd 11312 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 0 ≤ (𝑀𝑘))
18768, 155, 186fsumge0 15680 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 0 ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
188183, 187absidd 15307 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
189181, 188eqtrd 2776 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
190161, 189breqtrrd 5133 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))))
19167, 86, 95, 151, 190letrd 11312 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))))
192 simpllr 774 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑟 ∈ ℝ+)
193192rpred 12957 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑟 ∈ ℝ)
194 lelttr 11245 . . . . . . . . . 10 (((abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ∈ ℝ ∧ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∈ ℝ ∧ 𝑟 ∈ ℝ) → (((abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∧ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
19567, 95, 193, 194syl3anc 1371 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∧ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟) → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
196191, 195mpand 693 . . . . . . . 8 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
197196ralrimdva 3151 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
198197anassrs 468 . . . . . 6 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
199198ralimdva 3164 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
200199reximdva 3165 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∃𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
201200ralimdva 3164 . . 3 (𝜑 → (∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
2025, 201mpd 15 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟)
2033, 1, 10, 53ulmcau 25754 . 2 (𝜑 → (seq𝑁( ∘f + , 𝐹) ∈ dom (⇝𝑢𝑆) ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘f + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘f + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
204202, 203mpbird 256 1 (𝜑 → seq𝑁( ∘f + , 𝐹) ∈ dom (⇝𝑢𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cun 3908  cin 3909  c0 4282   class class class wbr 5105  cmpt 5188  dom cdm 5633   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  m cmap 8765  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  cz 12499  cuz 12763  +crp 12915  ...cfz 13424  seqcseq 13906  abscabs 15119  cli 15366  Σcsu 15570  𝑢culm 25735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ulm 25736
This theorem is referenced by:  pserulm  25781  lgamgulmlem6  26383  knoppcnlem6  34961
  Copyright terms: Public domain W3C validator