MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mtest Structured version   Visualization version   GIF version

Theorem mtest 24452
Description: The Weierstrass M-test. If 𝐹 is a sequence of functions which are uniformly bounded by the convergent sequence 𝑀(𝑘), then the series generated by the sequence 𝐹 converges uniformly. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
mtest.z 𝑍 = (ℤ𝑁)
mtest.n (𝜑𝑁 ∈ ℤ)
mtest.s (𝜑𝑆𝑉)
mtest.f (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
mtest.m (𝜑𝑀𝑊)
mtest.c ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℝ)
mtest.l ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
mtest.d (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ )
Assertion
Ref Expression
mtest (𝜑 → seq𝑁( ∘𝑓 + , 𝐹) ∈ dom (⇝𝑢𝑆))
Distinct variable groups:   𝑧,𝑘,𝐹   𝑘,𝑀,𝑧   𝑘,𝑁,𝑧   𝜑,𝑘,𝑧   𝑘,𝑍,𝑧   𝑆,𝑘,𝑧
Allowed substitution hints:   𝑉(𝑧,𝑘)   𝑊(𝑧,𝑘)

Proof of Theorem mtest
Dummy variables 𝑖 𝑗 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mtest.n . . . 4 (𝜑𝑁 ∈ ℤ)
2 mtest.d . . . 4 (𝜑 → seq𝑁( + , 𝑀) ∈ dom ⇝ )
3 mtest.z . . . . 5 𝑍 = (ℤ𝑁)
43climcau 14689 . . . 4 ((𝑁 ∈ ℤ ∧ seq𝑁( + , 𝑀) ∈ dom ⇝ ) → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟)
51, 2, 4syl2anc 579 . . 3 (𝜑 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟)
6 seqfn 13023 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → seq𝑁( ∘𝑓 + , 𝐹) Fn (ℤ𝑁))
71, 6syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → seq𝑁( ∘𝑓 + , 𝐹) Fn (ℤ𝑁))
83fneq2i 6166 . . . . . . . . . . . . . . . . . 18 (seq𝑁( ∘𝑓 + , 𝐹) Fn 𝑍 ↔ seq𝑁( ∘𝑓 + , 𝐹) Fn (ℤ𝑁))
97, 8sylibr 225 . . . . . . . . . . . . . . . . 17 (𝜑 → seq𝑁( ∘𝑓 + , 𝐹) Fn 𝑍)
10 mtest.s . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑆𝑉)
11 elex 3365 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆𝑉𝑆 ∈ V)
1210, 11syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ∈ V)
1312adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → 𝑆 ∈ V)
14 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝑍) → 𝑖𝑍)
1514, 3syl6eleq 2854 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → 𝑖 ∈ (ℤ𝑁))
16 mtest.f . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
1716adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖𝑍) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
18 elfzuz 12548 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (𝑁...𝑖) → 𝑘 ∈ (ℤ𝑁))
1918, 3syl6eleqr 2855 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (𝑁...𝑖) → 𝑘𝑍)
20 ffvelrn 6549 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹:𝑍⟶(ℂ ↑𝑚 𝑆) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ (ℂ ↑𝑚 𝑆))
2117, 19, 20syl2an 589 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) ∈ (ℂ ↑𝑚 𝑆))
22 elmapi 8084 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹𝑘) ∈ (ℂ ↑𝑚 𝑆) → (𝐹𝑘):𝑆⟶ℂ)
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘):𝑆⟶ℂ)
2423feqmptd 6440 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) = (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)))
2519adantl 473 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → 𝑘𝑍)
26 fveq2 6377 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
2726fveq1d 6379 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑘 → ((𝐹𝑛)‘𝑧) = ((𝐹𝑘)‘𝑧))
28 eqid 2765 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))
29 fvex 6390 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝑘)‘𝑧) ∈ V
3027, 28, 29fvmpt 6473 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘𝑍 → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
3125, 30syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
3231mpteq2dv 4906 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑧𝑆 ↦ ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘)) = (𝑧𝑆 ↦ ((𝐹𝑘)‘𝑧)))
3324, 32eqtr4d 2802 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) = (𝑧𝑆 ↦ ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘)))
3413, 15, 33seqof 13068 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑍) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
351adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧𝑆) → 𝑁 ∈ ℤ)
3616ffvelrnda 6551 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (ℂ ↑𝑚 𝑆))
37 elmapi 8084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝑛) ∈ (ℂ ↑𝑚 𝑆) → (𝐹𝑛):𝑆⟶ℂ)
3836, 37syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑛𝑍) → (𝐹𝑛):𝑆⟶ℂ)
3938ffvelrnda 6551 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑛𝑍) ∧ 𝑧𝑆) → ((𝐹𝑛)‘𝑧) ∈ ℂ)
4039an32s 642 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝑆) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑧) ∈ ℂ)
4140fmpttd 6577 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧𝑆) → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)):𝑍⟶ℂ)
4241ffvelrnda 6551 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ 𝑖𝑍) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑖) ∈ ℂ)
433, 35, 42serf 13039 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑆) → seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))):𝑍⟶ℂ)
4443ffvelrnda 6551 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ 𝑖𝑍) → (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ ℂ)
4544an32s 642 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖𝑍) ∧ 𝑧𝑆) → (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ ℂ)
4645fmpttd 6577 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)):𝑆⟶ℂ)
47 cnex 10272 . . . . . . . . . . . . . . . . . . . . 21 ℂ ∈ V
48 elmapg 8075 . . . . . . . . . . . . . . . . . . . . 21 ((ℂ ∈ V ∧ 𝑆 ∈ V) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ∈ (ℂ ↑𝑚 𝑆) ↔ (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)):𝑆⟶ℂ))
4947, 13, 48sylancr 581 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖𝑍) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ∈ (ℂ ↑𝑚 𝑆) ↔ (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)):𝑆⟶ℂ))
5046, 49mpbird 248 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖𝑍) → (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ∈ (ℂ ↑𝑚 𝑆))
5134, 50eqeltrd 2844 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝑍) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) ∈ (ℂ ↑𝑚 𝑆))
5251ralrimiva 3113 . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑖𝑍 (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) ∈ (ℂ ↑𝑚 𝑆))
53 ffnfv 6580 . . . . . . . . . . . . . . . . 17 (seq𝑁( ∘𝑓 + , 𝐹):𝑍⟶(ℂ ↑𝑚 𝑆) ↔ (seq𝑁( ∘𝑓 + , 𝐹) Fn 𝑍 ∧ ∀𝑖𝑍 (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) ∈ (ℂ ↑𝑚 𝑆)))
549, 52, 53sylanbrc 578 . . . . . . . . . . . . . . . 16 (𝜑 → seq𝑁( ∘𝑓 + , 𝐹):𝑍⟶(ℂ ↑𝑚 𝑆))
5554ad2antrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → seq𝑁( ∘𝑓 + , 𝐹):𝑍⟶(ℂ ↑𝑚 𝑆))
563uztrn2 11907 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑖 ∈ (ℤ𝑗)) → 𝑖𝑍)
5756adantl 473 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑖𝑍)
5855, 57ffvelrnd 6552 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) ∈ (ℂ ↑𝑚 𝑆))
59 elmapi 8084 . . . . . . . . . . . . . 14 ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) ∈ (ℂ ↑𝑚 𝑆) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖):𝑆⟶ℂ)
6058, 59syl 17 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖):𝑆⟶ℂ)
6160ffvelrnda 6551 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) ∈ ℂ)
62 simprl 787 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗𝑍)
6355, 62ffvelrnd 6552 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑗) ∈ (ℂ ↑𝑚 𝑆))
64 elmapi 8084 . . . . . . . . . . . . . 14 ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗) ∈ (ℂ ↑𝑚 𝑆) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑗):𝑆⟶ℂ)
6563, 64syl 17 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑗):𝑆⟶ℂ)
6665ffvelrnda 6551 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧) ∈ ℂ)
6761, 66subcld 10648 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧)) ∈ ℂ)
6867abscld 14463 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) ∈ ℝ)
69 fzfid 12983 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((𝑗 + 1)...𝑖) ∈ Fin)
70 ssun2 3941 . . . . . . . . . . . . . . . 16 ((𝑗 + 1)...𝑖) ⊆ ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖))
7162, 3syl6eleq 2854 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 ∈ (ℤ𝑁))
72 simprr 789 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑖 ∈ (ℤ𝑗))
73 elfzuzb 12546 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (𝑁...𝑖) ↔ (𝑗 ∈ (ℤ𝑁) ∧ 𝑖 ∈ (ℤ𝑗)))
7471, 72, 73sylanbrc 578 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 ∈ (𝑁...𝑖))
75 fzsplit 12577 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (𝑁...𝑖) → (𝑁...𝑖) = ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖)))
7674, 75syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (𝑁...𝑖) = ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖)))
7770, 76syl5sseqr 3816 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((𝑗 + 1)...𝑖) ⊆ (𝑁...𝑖))
7877sselda 3763 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 𝑘 ∈ (𝑁...𝑖))
7978adantlr 706 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 𝑘 ∈ (𝑁...𝑖))
8016ad2antrr 717 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝐹:𝑍⟶(ℂ ↑𝑚 𝑆))
8180, 19, 20syl2an 589 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘) ∈ (ℂ ↑𝑚 𝑆))
8281, 22syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝐹𝑘):𝑆⟶ℂ)
8382ffvelrnda 6551 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
8483an32s 642 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑖)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
8579, 84syldan 585 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
8685abscld 14463 . . . . . . . . . . 11 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
8769, 86fsumrecl 14753 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)) ∈ ℝ)
88 mtest.c . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → (𝑀𝑘) ∈ ℝ)
893, 1, 88serfre 13040 . . . . . . . . . . . . . . . 16 (𝜑 → seq𝑁( + , 𝑀):𝑍⟶ℝ)
9089ad2antrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → seq𝑁( + , 𝑀):𝑍⟶ℝ)
9190, 57ffvelrnd 6552 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( + , 𝑀)‘𝑖) ∈ ℝ)
9290, 62ffvelrnd 6552 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( + , 𝑀)‘𝑗) ∈ ℝ)
9391, 92resubcld 10714 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)) ∈ ℝ)
9493recnd 10324 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)) ∈ ℂ)
9594abscld 14463 . . . . . . . . . . 11 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∈ ℝ)
9695adantr 472 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∈ ℝ)
9756, 34sylan2 586 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
9897adantlr 706 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
9998fveq1d 6379 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) = ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))‘𝑧))
100 fvex 6390 . . . . . . . . . . . . . . . 16 (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ V
101 eqid 2765 . . . . . . . . . . . . . . . . 17 (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
102101fvmpt2 6482 . . . . . . . . . . . . . . . 16 ((𝑧𝑆 ∧ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) ∈ V) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
103100, 102mpan2 682 . . . . . . . . . . . . . . 15 (𝑧𝑆 → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
10499, 103sylan9eq 2819 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
105 fveq2 6377 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) = (seq𝑁( ∘𝑓 + , 𝐹)‘𝑗))
106 fveq2 6377 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑗 → (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
107106mpteq2dv 4906 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑗 → (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
108105, 107eqeq12d 2780 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑗 → ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)) ↔ (seq𝑁( ∘𝑓 + , 𝐹)‘𝑗) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))))
10934ralrimiva 3113 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑖𝑍 (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
110109ad2antrr 717 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ∀𝑖𝑍 (seq𝑁( ∘𝑓 + , 𝐹)‘𝑖) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖)))
111108, 110, 62rspcdva 3468 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (seq𝑁( ∘𝑓 + , 𝐹)‘𝑗) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
112111fveq1d 6379 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧) = ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))‘𝑧))
113 fvex 6390 . . . . . . . . . . . . . . . 16 (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗) ∈ V
114 eqid 2765 . . . . . . . . . . . . . . . . 17 (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)) = (𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
115114fvmpt2 6482 . . . . . . . . . . . . . . . 16 ((𝑧𝑆 ∧ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗) ∈ V) → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
116113, 115mpan2 682 . . . . . . . . . . . . . . 15 (𝑧𝑆 → ((𝑧𝑆 ↦ (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
117112, 116sylan9eq 2819 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
118104, 117oveq12d 6862 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧)) = ((seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) − (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
11919adantl 473 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑖)) → 𝑘𝑍)
120119, 30syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑖)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
12157adantr 472 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑖𝑍)
122121, 3syl6eleq 2854 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑖 ∈ (ℤ𝑁))
123120, 122, 84fsumser 14749 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖))
124 elfzuz 12548 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (𝑁...𝑗) → 𝑘 ∈ (ℤ𝑁))
125124, 3syl6eleqr 2855 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑁...𝑗) → 𝑘𝑍)
126125adantl 473 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑗)) → 𝑘𝑍)
127126, 30syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑗)) → ((𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧))‘𝑘) = ((𝐹𝑘)‘𝑧))
12862adantr 472 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑗𝑍)
129128, 3syl6eleq 2854 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑗 ∈ (ℤ𝑁))
13080, 125, 20syl2an 589 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘) ∈ (ℂ ↑𝑚 𝑆))
131130, 22syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝐹𝑘):𝑆⟶ℂ)
132131ffvelrnda 6551 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
133132an32s 642 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ (𝑁...𝑗)) → ((𝐹𝑘)‘𝑧) ∈ ℂ)
134127, 129, 133fsumser 14749 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧) = (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗))
135123, 134oveq12d 6862 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) − Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧)) = ((seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑖) − (seq𝑁( + , (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑧)))‘𝑗)))
136 eluzelre 11900 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (ℤ𝑁) → 𝑗 ∈ ℝ)
13771, 136syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 ∈ ℝ)
138137ltp1d 11210 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑗 < (𝑗 + 1))
139 fzdisj 12578 . . . . . . . . . . . . . . . . . 18 (𝑗 < (𝑗 + 1) → ((𝑁...𝑗) ∩ ((𝑗 + 1)...𝑖)) = ∅)
140138, 139syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((𝑁...𝑗) ∩ ((𝑗 + 1)...𝑖)) = ∅)
141140adantr 472 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((𝑁...𝑗) ∩ ((𝑗 + 1)...𝑖)) = ∅)
14276adantr 472 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (𝑁...𝑖) = ((𝑁...𝑗) ∪ ((𝑗 + 1)...𝑖)))
143 fzfid 12983 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (𝑁...𝑖) ∈ Fin)
144141, 142, 143, 84fsumsplit 14759 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) = (Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧)))
145144eqcomd 2771 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧)) = Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧))
146143, 84fsumcl 14752 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) ∈ ℂ)
147 fzfid 12983 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (𝑁...𝑗) ∈ Fin)
148147, 133fsumcl 14752 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧) ∈ ℂ)
14969, 85fsumcl 14752 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧) ∈ ℂ)
150146, 148, 149subaddd 10666 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) − Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧) ↔ (Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧)) = Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧)))
151145, 150mpbird 248 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (Σ𝑘 ∈ (𝑁...𝑖)((𝐹𝑘)‘𝑧) − Σ𝑘 ∈ (𝑁...𝑗)((𝐹𝑘)‘𝑧)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧))
152118, 135, 1513eqtr2d 2805 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧))
153152fveq2d 6381 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) = (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧)))
15469, 85fsumabs 14820 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)((𝐹𝑘)‘𝑧)) ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)))
155153, 154eqbrtrd 4833 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)))
156 simpll 783 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝜑)
157156, 19, 88syl2an 589 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑀𝑘) ∈ ℝ)
15878, 157syldan 585 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (𝑀𝑘) ∈ ℝ)
159158adantlr 706 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (𝑀𝑘) ∈ ℝ)
16079, 19syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 𝑘𝑍)
161 mtest.l . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
162161adantlr 706 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
163162adantlr 706 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ (𝑘𝑍𝑧𝑆)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
164163anass1rs 645 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘𝑍) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
165160, 164syldan 585 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (abs‘((𝐹𝑘)‘𝑧)) ≤ (𝑀𝑘))
16669, 86, 159, 165fsumle 14818 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)) ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
167 eqidd 2766 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑀𝑘) = (𝑀𝑘))
16857, 3syl6eleq 2854 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → 𝑖 ∈ (ℤ𝑁))
169157recnd 10324 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑖)) → (𝑀𝑘) ∈ ℂ)
170167, 168, 169fsumser 14749 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) = (seq𝑁( + , 𝑀)‘𝑖))
171 eqidd 2766 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝑀𝑘) = (𝑀𝑘))
172156, 125, 88syl2an 589 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝑀𝑘) ∈ ℝ)
173172recnd 10324 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑁...𝑗)) → (𝑀𝑘) ∈ ℂ)
174171, 71, 173fsumser 14749 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘) = (seq𝑁( + , 𝑀)‘𝑗))
175170, 174oveq12d 6862 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) − Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘)) = ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)))
176 fzfid 12983 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (𝑁...𝑖) ∈ Fin)
177140, 76, 176, 169fsumsplit 14759 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) = (Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)))
178177eqcomd 2771 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)) = Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘))
179176, 169fsumcl 14752 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) ∈ ℂ)
180 fzfid 12983 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (𝑁...𝑗) ∈ Fin)
181180, 173fsumcl 14752 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘) ∈ ℂ)
182 fzfid 12983 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((𝑗 + 1)...𝑖) ∈ Fin)
18378, 169syldan 585 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → (𝑀𝑘) ∈ ℂ)
184182, 183fsumcl 14752 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘) ∈ ℂ)
185179, 181, 184subaddd 10666 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) − Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘) ↔ (Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘) + Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)) = Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘)))
186178, 185mpbird 248 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑁...𝑖)(𝑀𝑘) − Σ𝑘 ∈ (𝑁...𝑗)(𝑀𝑘)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
187175, 186eqtr3d 2801 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
188187fveq2d 6381 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) = (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)))
189188adantr 472 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) = (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)))
190187, 93eqeltrrd 2845 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘) ∈ ℝ)
191190adantr 472 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘) ∈ ℝ)
192 0red 10299 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 0 ∈ ℝ)
19385absge0d 14471 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 0 ≤ (abs‘((𝐹𝑘)‘𝑧)))
194192, 86, 159, 193, 165letrd 10450 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) ∧ 𝑘 ∈ ((𝑗 + 1)...𝑖)) → 0 ≤ (𝑀𝑘))
19569, 159, 194fsumge0 14814 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 0 ≤ Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
196191, 195absidd 14449 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘)) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
197189, 196eqtrd 2799 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) = Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(𝑀𝑘))
198166, 197breqtrrd 4839 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → Σ𝑘 ∈ ((𝑗 + 1)...𝑖)(abs‘((𝐹𝑘)‘𝑧)) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))))
19968, 87, 96, 155, 198letrd 10450 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))))
200 simpllr 793 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑟 ∈ ℝ+)
201200rpred 12073 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → 𝑟 ∈ ℝ)
202 lelttr 10384 . . . . . . . . . 10 (((abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) ∈ ℝ ∧ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∈ ℝ ∧ 𝑟 ∈ ℝ) → (((abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∧ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟) → (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
20368, 96, 201, 202syl3anc 1490 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → (((abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) ≤ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) ∧ (abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟) → (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
204199, 203mpand 686 . . . . . . . 8 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) ∧ 𝑧𝑆) → ((abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
205204ralrimdva 3116 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑗𝑍𝑖 ∈ (ℤ𝑗))) → ((abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑧𝑆 (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
206205anassrs 459 . . . . . 6 ((((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑖 ∈ (ℤ𝑗)) → ((abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑧𝑆 (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
207206ralimdva 3109 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
208207reximdva 3163 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∃𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
209208ralimdva 3109 . . 3 (𝜑 → (∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)(abs‘((seq𝑁( + , 𝑀)‘𝑖) − (seq𝑁( + , 𝑀)‘𝑗))) < 𝑟 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
2105, 209mpd 15 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟)
2113, 1, 10, 54ulmcau 24443 . 2 (𝜑 → (seq𝑁( ∘𝑓 + , 𝐹) ∈ dom (⇝𝑢𝑆) ↔ ∀𝑟 ∈ ℝ+𝑗𝑍𝑖 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((seq𝑁( ∘𝑓 + , 𝐹)‘𝑖)‘𝑧) − ((seq𝑁( ∘𝑓 + , 𝐹)‘𝑗)‘𝑧))) < 𝑟))
212210, 211mpbird 248 1 (𝜑 → seq𝑁( ∘𝑓 + , 𝐹) ∈ dom (⇝𝑢𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  wrex 3056  Vcvv 3350  cun 3732  cin 3733  c0 4081   class class class wbr 4811  cmpt 4890  dom cdm 5279   Fn wfn 6065  wf 6066  cfv 6070  (class class class)co 6844  𝑓 cof 7095  𝑚 cmap 8062  cc 10189  cr 10190  0cc0 10191  1c1 10192   + caddc 10194   < clt 10330  cle 10331  cmin 10522  cz 11626  cuz 11889  +crp 12031  ...cfz 12536  seqcseq 13011  abscabs 14262  cli 14503  Σcsu 14704  𝑢culm 24424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-inf2 8755  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269  ax-addf 10270  ax-mulf 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-of 7097  df-om 7266  df-1st 7368  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-oadd 7770  df-er 7949  df-map 8064  df-pm 8065  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-sup 8557  df-inf 8558  df-oi 8624  df-card 9018  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-n0 11541  df-z 11627  df-uz 11890  df-rp 12032  df-ico 12386  df-fz 12537  df-fzo 12677  df-fl 12804  df-seq 13012  df-exp 13071  df-hash 13325  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263  df-abs 14264  df-limsup 14490  df-clim 14507  df-rlim 14508  df-sum 14705  df-ulm 24425
This theorem is referenced by:  pserulm  24470  lgamgulmlem6  25054  knoppcnlem6  32930
  Copyright terms: Public domain W3C validator