MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumo1 Structured version   Visualization version   GIF version

Theorem fsumo1 15260
Description: The finite sum of eventually bounded functions (where the index set 𝐵 does not depend on 𝑥) is eventually bounded. (Contributed by Mario Carneiro, 30-Apr-2016.) (Proof shortened by Mario Carneiro, 22-May-2016.)
Hypotheses
Ref Expression
fsumo1.1 (𝜑𝐴 ⊆ ℝ)
fsumo1.2 (𝜑𝐵 ∈ Fin)
fsumo1.3 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶𝑉)
fsumo1.4 ((𝜑𝑘𝐵) → (𝑥𝐴𝐶) ∈ 𝑂(1))
Assertion
Ref Expression
fsumo1 (𝜑 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑘,𝐴   𝐵,𝑘,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑘)   𝑉(𝑥,𝑘)

Proof of Theorem fsumo1
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3899 . 2 𝐵𝐵
2 fsumo1.2 . . 3 (𝜑𝐵 ∈ Fin)
3 sseq1 3902 . . . . . 6 (𝑤 = ∅ → (𝑤𝐵 ↔ ∅ ⊆ 𝐵))
4 sumeq1 15138 . . . . . . . . 9 (𝑤 = ∅ → Σ𝑘𝑤 𝐶 = Σ𝑘 ∈ ∅ 𝐶)
5 sum0 15171 . . . . . . . . 9 Σ𝑘 ∈ ∅ 𝐶 = 0
64, 5eqtrdi 2789 . . . . . . . 8 (𝑤 = ∅ → Σ𝑘𝑤 𝐶 = 0)
76mpteq2dv 5126 . . . . . . 7 (𝑤 = ∅ → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) = (𝑥𝐴 ↦ 0))
87eleq1d 2817 . . . . . 6 (𝑤 = ∅ → ((𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥𝐴 ↦ 0) ∈ 𝑂(1)))
93, 8imbi12d 348 . . . . 5 (𝑤 = ∅ → ((𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1)) ↔ (∅ ⊆ 𝐵 → (𝑥𝐴 ↦ 0) ∈ 𝑂(1))))
109imbi2d 344 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → (∅ ⊆ 𝐵 → (𝑥𝐴 ↦ 0) ∈ 𝑂(1)))))
11 sseq1 3902 . . . . . 6 (𝑤 = 𝑦 → (𝑤𝐵𝑦𝐵))
12 sumeq1 15138 . . . . . . . 8 (𝑤 = 𝑦 → Σ𝑘𝑤 𝐶 = Σ𝑘𝑦 𝐶)
1312mpteq2dv 5126 . . . . . . 7 (𝑤 = 𝑦 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) = (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶))
1413eleq1d 2817 . . . . . 6 (𝑤 = 𝑦 → ((𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)))
1511, 14imbi12d 348 . . . . 5 (𝑤 = 𝑦 → ((𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1)) ↔ (𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1))))
1615imbi2d 344 . . . 4 (𝑤 = 𝑦 → ((𝜑 → (𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → (𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)))))
17 sseq1 3902 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤𝐵 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐵))
18 sumeq1 15138 . . . . . . . 8 (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑤 𝐶 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)
1918mpteq2dv 5126 . . . . . . 7 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) = (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶))
2019eleq1d 2817 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))
2117, 20imbi12d 348 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1)) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))
2221imbi2d 344 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))))
23 sseq1 3902 . . . . . 6 (𝑤 = 𝐵 → (𝑤𝐵𝐵𝐵))
24 sumeq1 15138 . . . . . . . 8 (𝑤 = 𝐵 → Σ𝑘𝑤 𝐶 = Σ𝑘𝐵 𝐶)
2524mpteq2dv 5126 . . . . . . 7 (𝑤 = 𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) = (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶))
2625eleq1d 2817 . . . . . 6 (𝑤 = 𝐵 → ((𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1)))
2723, 26imbi12d 348 . . . . 5 (𝑤 = 𝐵 → ((𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1)) ↔ (𝐵𝐵 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1))))
2827imbi2d 344 . . . 4 (𝑤 = 𝐵 → ((𝜑 → (𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → (𝐵𝐵 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1)))))
29 fsumo1.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
30 0cn 10711 . . . . . 6 0 ∈ ℂ
31 o1const 15067 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 0 ∈ ℂ) → (𝑥𝐴 ↦ 0) ∈ 𝑂(1))
3229, 30, 31sylancl 589 . . . . 5 (𝜑 → (𝑥𝐴 ↦ 0) ∈ 𝑂(1))
3332a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝐵 → (𝑥𝐴 ↦ 0) ∈ 𝑂(1)))
34 ssun1 4062 . . . . . . . . . 10 𝑦 ⊆ (𝑦 ∪ {𝑧})
35 sstr 3885 . . . . . . . . . 10 ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵) → 𝑦𝐵)
3634, 35mpan 690 . . . . . . . . 9 ((𝑦 ∪ {𝑧}) ⊆ 𝐵𝑦𝐵)
3736imim1i 63 . . . . . . . 8 ((𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)))
38 simprl 771 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ¬ 𝑧𝑦)
39 disjsn 4602 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
4038, 39sylibr 237 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∩ {𝑧}) = ∅)
4140adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → (𝑦 ∩ {𝑧}) = ∅)
42 eqidd 2739 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
432adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝐵 ∈ Fin)
44 simprr 773 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∪ {𝑧}) ⊆ 𝐵)
4543, 44ssfid 8819 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∪ {𝑧}) ∈ Fin)
4645adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → (𝑦 ∪ {𝑧}) ∈ Fin)
4744sselda 3877 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐵)
4847adantlr 715 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐵)
49 fsumo1.3 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶𝑉)
5049anass1rs 655 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐶𝑉)
51 fsumo1.4 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝐵) → (𝑥𝐴𝐶) ∈ 𝑂(1))
5250, 51o1mptrcl 15070 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐶 ∈ ℂ)
5352an32s 652 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
5453adantllr 719 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
5548, 54syldan 594 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐶 ∈ ℂ)
5641, 42, 46, 55fsumsplit 15190 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (Σ𝑘𝑦 𝐶 + Σ𝑘 ∈ {𝑧}𝐶))
57 nfcv 2899 . . . . . . . . . . . . . . . . . . 19 𝑤𝐶
58 nfcsb1v 3814 . . . . . . . . . . . . . . . . . . 19 𝑘𝑤 / 𝑘𝐶
59 csbeq1a 3804 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑤𝐶 = 𝑤 / 𝑘𝐶)
6057, 58, 59cbvsumi 15147 . . . . . . . . . . . . . . . . . 18 Σ𝑘 ∈ {𝑧}𝐶 = Σ𝑤 ∈ {𝑧}𝑤 / 𝑘𝐶
6144unssbd 4078 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → {𝑧} ⊆ 𝐵)
62 vex 3402 . . . . . . . . . . . . . . . . . . . . . 22 𝑧 ∈ V
6362snss 4674 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝐵 ↔ {𝑧} ⊆ 𝐵)
6461, 63sylibr 237 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝑧𝐵)
6564adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → 𝑧𝐵)
6654ralrimiva 3096 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → ∀𝑘𝐵 𝐶 ∈ ℂ)
67 nfcsb1v 3814 . . . . . . . . . . . . . . . . . . . . . 22 𝑘𝑧 / 𝑘𝐶
6867nfel1 2915 . . . . . . . . . . . . . . . . . . . . 21 𝑘𝑧 / 𝑘𝐶 ∈ ℂ
69 csbeq1a 3804 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑧𝐶 = 𝑧 / 𝑘𝐶)
7069eleq1d 2817 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑧 → (𝐶 ∈ ℂ ↔ 𝑧 / 𝑘𝐶 ∈ ℂ))
7168, 70rspc 3514 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝐵 → (∀𝑘𝐵 𝐶 ∈ ℂ → 𝑧 / 𝑘𝐶 ∈ ℂ))
7265, 66, 71sylc 65 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → 𝑧 / 𝑘𝐶 ∈ ℂ)
73 csbeq1 3793 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑧𝑤 / 𝑘𝐶 = 𝑧 / 𝑘𝐶)
7473sumsn 15194 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝐵𝑧 / 𝑘𝐶 ∈ ℂ) → Σ𝑤 ∈ {𝑧}𝑤 / 𝑘𝐶 = 𝑧 / 𝑘𝐶)
7565, 72, 74syl2anc 587 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → Σ𝑤 ∈ {𝑧}𝑤 / 𝑘𝐶 = 𝑧 / 𝑘𝐶)
7660, 75syl5eq 2785 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → Σ𝑘 ∈ {𝑧}𝐶 = 𝑧 / 𝑘𝐶)
7776oveq2d 7186 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → (Σ𝑘𝑦 𝐶 + Σ𝑘 ∈ {𝑧}𝐶) = (Σ𝑘𝑦 𝐶 + 𝑧 / 𝑘𝐶))
7856, 77eqtrd 2773 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (Σ𝑘𝑦 𝐶 + 𝑧 / 𝑘𝐶))
7978mpteq2dva 5125 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = (𝑥𝐴 ↦ (Σ𝑘𝑦 𝐶 + 𝑧 / 𝑘𝐶)))
8029adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝐴 ⊆ ℝ)
81 reex 10706 . . . . . . . . . . . . . . . . 17 ℝ ∈ V
8281ssex 5189 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
8380, 82syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝐴 ∈ V)
84 sumex 15137 . . . . . . . . . . . . . . . 16 Σ𝑘𝑦 𝐶 ∈ V
8584a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → Σ𝑘𝑦 𝐶 ∈ V)
86 eqidd 2739 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) = (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶))
87 eqidd 2739 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥𝐴𝑧 / 𝑘𝐶) = (𝑥𝐴𝑧 / 𝑘𝐶))
8883, 85, 72, 86, 87offval2 7444 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∘f + (𝑥𝐴𝑧 / 𝑘𝐶)) = (𝑥𝐴 ↦ (Σ𝑘𝑦 𝐶 + 𝑧 / 𝑘𝐶)))
8979, 88eqtr4d 2776 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∘f + (𝑥𝐴𝑧 / 𝑘𝐶)))
9089adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∘f + (𝑥𝐴𝑧 / 𝑘𝐶)))
91 id 22 . . . . . . . . . . . . 13 ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1) → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1))
9251ralrimiva 3096 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘𝐵 (𝑥𝐴𝐶) ∈ 𝑂(1))
9392adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑘𝐵 (𝑥𝐴𝐶) ∈ 𝑂(1))
94 nfcv 2899 . . . . . . . . . . . . . . . . 17 𝑘𝐴
9594, 67nfmpt 5127 . . . . . . . . . . . . . . . 16 𝑘(𝑥𝐴𝑧 / 𝑘𝐶)
9695nfel1 2915 . . . . . . . . . . . . . . 15 𝑘(𝑥𝐴𝑧 / 𝑘𝐶) ∈ 𝑂(1)
9769mpteq2dv 5126 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑥𝐴𝐶) = (𝑥𝐴𝑧 / 𝑘𝐶))
9897eleq1d 2817 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → ((𝑥𝐴𝐶) ∈ 𝑂(1) ↔ (𝑥𝐴𝑧 / 𝑘𝐶) ∈ 𝑂(1)))
9996, 98rspc 3514 . . . . . . . . . . . . . 14 (𝑧𝐵 → (∀𝑘𝐵 (𝑥𝐴𝐶) ∈ 𝑂(1) → (𝑥𝐴𝑧 / 𝑘𝐶) ∈ 𝑂(1)))
10064, 93, 99sylc 65 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥𝐴𝑧 / 𝑘𝐶) ∈ 𝑂(1))
101 o1add 15061 . . . . . . . . . . . . 13 (((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1) ∧ (𝑥𝐴𝑧 / 𝑘𝐶) ∈ 𝑂(1)) → ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∘f + (𝑥𝐴𝑧 / 𝑘𝐶)) ∈ 𝑂(1))
10291, 100, 101syl2anr 600 . . . . . . . . . . . 12 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∘f + (𝑥𝐴𝑧 / 𝑘𝐶)) ∈ 𝑂(1))
10390, 102eqeltrd 2833 . . . . . . . . . . 11 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))
104103ex 416 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))
105104expr 460 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝑦) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))
106105a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑧𝑦) → (((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))
10737, 106syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑧𝑦) → ((𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))
108107expcom 417 . . . . . 6 𝑧𝑦 → (𝜑 → ((𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))))
109108a2d 29 . . . . 5 𝑧𝑦 → ((𝜑 → (𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1))) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))))
110109adantl 485 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝜑 → (𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1))) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))))
11110, 16, 22, 28, 33, 110findcard2s 8764 . . 3 (𝐵 ∈ Fin → (𝜑 → (𝐵𝐵 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1))))
1122, 111mpcom 38 . 2 (𝜑 → (𝐵𝐵 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1)))
1131, 112mpi 20 1 (𝜑 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1542  wcel 2114  wral 3053  Vcvv 3398  csb 3790  cun 3841  cin 3842  wss 3843  c0 4211  {csn 4516  cmpt 5110  (class class class)co 7170  f cof 7423  Fincfn 8555  cc 10613  cr 10614  0cc0 10615   + caddc 10618  𝑂(1)co1 14933  Σcsu 15135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-pm 8440  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-sup 8979  df-oi 9047  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-z 12063  df-uz 12325  df-rp 12473  df-ico 12827  df-fz 12982  df-fzo 13125  df-seq 13461  df-exp 13522  df-hash 13783  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-clim 14935  df-rlim 14936  df-o1 14937  df-sum 15136
This theorem is referenced by:  rpvmasum2  26248
  Copyright terms: Public domain W3C validator