MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumo1 Structured version   Visualization version   GIF version

Theorem fsumo1 15159
Description: The finite sum of eventually bounded functions (where the index set 𝐵 does not depend on 𝑥) is eventually bounded. (Contributed by Mario Carneiro, 30-Apr-2016.) (Proof shortened by Mario Carneiro, 22-May-2016.)
Hypotheses
Ref Expression
fsumo1.1 (𝜑𝐴 ⊆ ℝ)
fsumo1.2 (𝜑𝐵 ∈ Fin)
fsumo1.3 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶𝑉)
fsumo1.4 ((𝜑𝑘𝐵) → (𝑥𝐴𝐶) ∈ 𝑂(1))
Assertion
Ref Expression
fsumo1 (𝜑 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑘,𝐴   𝐵,𝑘,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑘)   𝑉(𝑥,𝑘)

Proof of Theorem fsumo1
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3937 . 2 𝐵𝐵
2 fsumo1.2 . . 3 (𝜑𝐵 ∈ Fin)
3 sseq1 3940 . . . . . 6 (𝑤 = ∅ → (𝑤𝐵 ↔ ∅ ⊆ 𝐵))
4 sumeq1 15037 . . . . . . . . 9 (𝑤 = ∅ → Σ𝑘𝑤 𝐶 = Σ𝑘 ∈ ∅ 𝐶)
5 sum0 15070 . . . . . . . . 9 Σ𝑘 ∈ ∅ 𝐶 = 0
64, 5eqtrdi 2849 . . . . . . . 8 (𝑤 = ∅ → Σ𝑘𝑤 𝐶 = 0)
76mpteq2dv 5126 . . . . . . 7 (𝑤 = ∅ → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) = (𝑥𝐴 ↦ 0))
87eleq1d 2874 . . . . . 6 (𝑤 = ∅ → ((𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥𝐴 ↦ 0) ∈ 𝑂(1)))
93, 8imbi12d 348 . . . . 5 (𝑤 = ∅ → ((𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1)) ↔ (∅ ⊆ 𝐵 → (𝑥𝐴 ↦ 0) ∈ 𝑂(1))))
109imbi2d 344 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → (∅ ⊆ 𝐵 → (𝑥𝐴 ↦ 0) ∈ 𝑂(1)))))
11 sseq1 3940 . . . . . 6 (𝑤 = 𝑦 → (𝑤𝐵𝑦𝐵))
12 sumeq1 15037 . . . . . . . 8 (𝑤 = 𝑦 → Σ𝑘𝑤 𝐶 = Σ𝑘𝑦 𝐶)
1312mpteq2dv 5126 . . . . . . 7 (𝑤 = 𝑦 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) = (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶))
1413eleq1d 2874 . . . . . 6 (𝑤 = 𝑦 → ((𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)))
1511, 14imbi12d 348 . . . . 5 (𝑤 = 𝑦 → ((𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1)) ↔ (𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1))))
1615imbi2d 344 . . . 4 (𝑤 = 𝑦 → ((𝜑 → (𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → (𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)))))
17 sseq1 3940 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤𝐵 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐵))
18 sumeq1 15037 . . . . . . . 8 (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑤 𝐶 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)
1918mpteq2dv 5126 . . . . . . 7 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) = (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶))
2019eleq1d 2874 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))
2117, 20imbi12d 348 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1)) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))
2221imbi2d 344 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))))
23 sseq1 3940 . . . . . 6 (𝑤 = 𝐵 → (𝑤𝐵𝐵𝐵))
24 sumeq1 15037 . . . . . . . 8 (𝑤 = 𝐵 → Σ𝑘𝑤 𝐶 = Σ𝑘𝐵 𝐶)
2524mpteq2dv 5126 . . . . . . 7 (𝑤 = 𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) = (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶))
2625eleq1d 2874 . . . . . 6 (𝑤 = 𝐵 → ((𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1)))
2723, 26imbi12d 348 . . . . 5 (𝑤 = 𝐵 → ((𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1)) ↔ (𝐵𝐵 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1))))
2827imbi2d 344 . . . 4 (𝑤 = 𝐵 → ((𝜑 → (𝑤𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → (𝐵𝐵 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1)))))
29 fsumo1.1 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
30 0cn 10622 . . . . . 6 0 ∈ ℂ
31 o1const 14968 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 0 ∈ ℂ) → (𝑥𝐴 ↦ 0) ∈ 𝑂(1))
3229, 30, 31sylancl 589 . . . . 5 (𝜑 → (𝑥𝐴 ↦ 0) ∈ 𝑂(1))
3332a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝐵 → (𝑥𝐴 ↦ 0) ∈ 𝑂(1)))
34 ssun1 4099 . . . . . . . . . 10 𝑦 ⊆ (𝑦 ∪ {𝑧})
35 sstr 3923 . . . . . . . . . 10 ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵) → 𝑦𝐵)
3634, 35mpan 689 . . . . . . . . 9 ((𝑦 ∪ {𝑧}) ⊆ 𝐵𝑦𝐵)
3736imim1i 63 . . . . . . . 8 ((𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)))
38 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ¬ 𝑧𝑦)
39 disjsn 4607 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
4038, 39sylibr 237 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∩ {𝑧}) = ∅)
4140adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → (𝑦 ∩ {𝑧}) = ∅)
42 eqidd 2799 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
432adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝐵 ∈ Fin)
44 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∪ {𝑧}) ⊆ 𝐵)
4543, 44ssfid 8725 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∪ {𝑧}) ∈ Fin)
4645adantr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → (𝑦 ∪ {𝑧}) ∈ Fin)
4744sselda 3915 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐵)
4847adantlr 714 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐵)
49 fsumo1.3 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑥𝐴𝑘𝐵)) → 𝐶𝑉)
5049anass1rs 654 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐶𝑉)
51 fsumo1.4 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝐵) → (𝑥𝐴𝐶) ∈ 𝑂(1))
5250, 51o1mptrcl 14971 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘𝐵) ∧ 𝑥𝐴) → 𝐶 ∈ ℂ)
5352an32s 651 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
5453adantllr 718 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
5548, 54syldan 594 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐶 ∈ ℂ)
5641, 42, 46, 55fsumsplit 15089 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (Σ𝑘𝑦 𝐶 + Σ𝑘 ∈ {𝑧}𝐶))
57 nfcv 2955 . . . . . . . . . . . . . . . . . . 19 𝑤𝐶
58 nfcsb1v 3852 . . . . . . . . . . . . . . . . . . 19 𝑘𝑤 / 𝑘𝐶
59 csbeq1a 3842 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑤𝐶 = 𝑤 / 𝑘𝐶)
6057, 58, 59cbvsumi 15046 . . . . . . . . . . . . . . . . . 18 Σ𝑘 ∈ {𝑧}𝐶 = Σ𝑤 ∈ {𝑧}𝑤 / 𝑘𝐶
6144unssbd 4115 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → {𝑧} ⊆ 𝐵)
62 vex 3444 . . . . . . . . . . . . . . . . . . . . . 22 𝑧 ∈ V
6362snss 4679 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝐵 ↔ {𝑧} ⊆ 𝐵)
6461, 63sylibr 237 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝑧𝐵)
6564adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → 𝑧𝐵)
6654ralrimiva 3149 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → ∀𝑘𝐵 𝐶 ∈ ℂ)
67 nfcsb1v 3852 . . . . . . . . . . . . . . . . . . . . . 22 𝑘𝑧 / 𝑘𝐶
6867nfel1 2971 . . . . . . . . . . . . . . . . . . . . 21 𝑘𝑧 / 𝑘𝐶 ∈ ℂ
69 csbeq1a 3842 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑧𝐶 = 𝑧 / 𝑘𝐶)
7069eleq1d 2874 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑧 → (𝐶 ∈ ℂ ↔ 𝑧 / 𝑘𝐶 ∈ ℂ))
7168, 70rspc 3559 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝐵 → (∀𝑘𝐵 𝐶 ∈ ℂ → 𝑧 / 𝑘𝐶 ∈ ℂ))
7265, 66, 71sylc 65 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → 𝑧 / 𝑘𝐶 ∈ ℂ)
73 csbeq1 3831 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑧𝑤 / 𝑘𝐶 = 𝑧 / 𝑘𝐶)
7473sumsn 15093 . . . . . . . . . . . . . . . . . . 19 ((𝑧𝐵𝑧 / 𝑘𝐶 ∈ ℂ) → Σ𝑤 ∈ {𝑧}𝑤 / 𝑘𝐶 = 𝑧 / 𝑘𝐶)
7565, 72, 74syl2anc 587 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → Σ𝑤 ∈ {𝑧}𝑤 / 𝑘𝐶 = 𝑧 / 𝑘𝐶)
7660, 75syl5eq 2845 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → Σ𝑘 ∈ {𝑧}𝐶 = 𝑧 / 𝑘𝐶)
7776oveq2d 7151 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → (Σ𝑘𝑦 𝐶 + Σ𝑘 ∈ {𝑧}𝐶) = (Σ𝑘𝑦 𝐶 + 𝑧 / 𝑘𝐶))
7856, 77eqtrd 2833 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (Σ𝑘𝑦 𝐶 + 𝑧 / 𝑘𝐶))
7978mpteq2dva 5125 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = (𝑥𝐴 ↦ (Σ𝑘𝑦 𝐶 + 𝑧 / 𝑘𝐶)))
8029adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝐴 ⊆ ℝ)
81 reex 10617 . . . . . . . . . . . . . . . . 17 ℝ ∈ V
8281ssex 5189 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
8380, 82syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝐴 ∈ V)
84 sumex 15036 . . . . . . . . . . . . . . . 16 Σ𝑘𝑦 𝐶 ∈ V
8584a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥𝐴) → Σ𝑘𝑦 𝐶 ∈ V)
86 eqidd 2799 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) = (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶))
87 eqidd 2799 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥𝐴𝑧 / 𝑘𝐶) = (𝑥𝐴𝑧 / 𝑘𝐶))
8883, 85, 72, 86, 87offval2 7406 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∘f + (𝑥𝐴𝑧 / 𝑘𝐶)) = (𝑥𝐴 ↦ (Σ𝑘𝑦 𝐶 + 𝑧 / 𝑘𝐶)))
8979, 88eqtr4d 2836 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∘f + (𝑥𝐴𝑧 / 𝑘𝐶)))
9089adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∘f + (𝑥𝐴𝑧 / 𝑘𝐶)))
91 id 22 . . . . . . . . . . . . 13 ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1) → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1))
9251ralrimiva 3149 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘𝐵 (𝑥𝐴𝐶) ∈ 𝑂(1))
9392adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑘𝐵 (𝑥𝐴𝐶) ∈ 𝑂(1))
94 nfcv 2955 . . . . . . . . . . . . . . . . 17 𝑘𝐴
9594, 67nfmpt 5127 . . . . . . . . . . . . . . . 16 𝑘(𝑥𝐴𝑧 / 𝑘𝐶)
9695nfel1 2971 . . . . . . . . . . . . . . 15 𝑘(𝑥𝐴𝑧 / 𝑘𝐶) ∈ 𝑂(1)
9769mpteq2dv 5126 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑥𝐴𝐶) = (𝑥𝐴𝑧 / 𝑘𝐶))
9897eleq1d 2874 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → ((𝑥𝐴𝐶) ∈ 𝑂(1) ↔ (𝑥𝐴𝑧 / 𝑘𝐶) ∈ 𝑂(1)))
9996, 98rspc 3559 . . . . . . . . . . . . . 14 (𝑧𝐵 → (∀𝑘𝐵 (𝑥𝐴𝐶) ∈ 𝑂(1) → (𝑥𝐴𝑧 / 𝑘𝐶) ∈ 𝑂(1)))
10064, 93, 99sylc 65 . . . . . . . . . . . . 13 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥𝐴𝑧 / 𝑘𝐶) ∈ 𝑂(1))
101 o1add 14962 . . . . . . . . . . . . 13 (((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1) ∧ (𝑥𝐴𝑧 / 𝑘𝐶) ∈ 𝑂(1)) → ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∘f + (𝑥𝐴𝑧 / 𝑘𝐶)) ∈ 𝑂(1))
10291, 100, 101syl2anr 599 . . . . . . . . . . . 12 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∘f + (𝑥𝐴𝑧 / 𝑘𝐶)) ∈ 𝑂(1))
10390, 102eqeltrd 2890 . . . . . . . . . . 11 (((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))
104103ex 416 . . . . . . . . . 10 ((𝜑 ∧ (¬ 𝑧𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))
105104expr 460 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝑦) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1) → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))
106105a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑧𝑦) → (((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))
10737, 106syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑧𝑦) → ((𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))
108107expcom 417 . . . . . 6 𝑧𝑦 → (𝜑 → ((𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))))
109108a2d 29 . . . . 5 𝑧𝑦 → ((𝜑 → (𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1))) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))))
110109adantl 485 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝜑 → (𝑦𝐵 → (𝑥𝐴 ↦ Σ𝑘𝑦 𝐶) ∈ 𝑂(1))) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))))
11110, 16, 22, 28, 33, 110findcard2s 8743 . . 3 (𝐵 ∈ Fin → (𝜑 → (𝐵𝐵 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1))))
1122, 111mpcom 38 . 2 (𝜑 → (𝐵𝐵 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1)))
1131, 112mpi 20 1 (𝜑 → (𝑥𝐴 ↦ Σ𝑘𝐵 𝐶) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  csb 3828  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525  cmpt 5110  (class class class)co 7135  f cof 7387  Fincfn 8492  cc 10524  cr 10525  0cc0 10526   + caddc 10529  𝑂(1)co1 14835  Σcsu 15034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-o1 14839  df-sum 15035
This theorem is referenced by:  rpvmasum2  26096
  Copyright terms: Public domain W3C validator