Step | Hyp | Ref
| Expression |
1 | | ssid 3939 |
. 2
⊢ 𝐵 ⊆ 𝐵 |
2 | | fsumo1.2 |
. . 3
⊢ (𝜑 → 𝐵 ∈ Fin) |
3 | | sseq1 3942 |
. . . . . 6
⊢ (𝑤 = ∅ → (𝑤 ⊆ 𝐵 ↔ ∅ ⊆ 𝐵)) |
4 | | sumeq1 15328 |
. . . . . . . . 9
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑘 ∈ ∅ 𝐶) |
5 | | sum0 15361 |
. . . . . . . . 9
⊢
Σ𝑘 ∈
∅ 𝐶 =
0 |
6 | 4, 5 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 𝐶 = 0) |
7 | 6 | mpteq2dv 5172 |
. . . . . . 7
⊢ (𝑤 = ∅ → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ 0)) |
8 | 7 | eleq1d 2823 |
. . . . . 6
⊢ (𝑤 = ∅ → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 0) ∈
𝑂(1))) |
9 | 3, 8 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = ∅ → ((𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1)) ↔ (∅
⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 0) ∈
𝑂(1)))) |
10 | 9 | imbi2d 340 |
. . . 4
⊢ (𝑤 = ∅ → ((𝜑 → (𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → (∅ ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 0) ∈
𝑂(1))))) |
11 | | sseq1 3942 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝑤 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐵)) |
12 | | sumeq1 15328 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑘 ∈ 𝑦 𝐶) |
13 | 12 | mpteq2dv 5172 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶)) |
14 | 13 | eleq1d 2823 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1))) |
15 | 11, 14 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = 𝑦 → ((𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1)) ↔ (𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1)))) |
16 | 15 | imbi2d 340 |
. . . 4
⊢ (𝑤 = 𝑦 → ((𝜑 → (𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → (𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1))))) |
17 | | sseq1 3942 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 ⊆ 𝐵 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) |
18 | | sumeq1 15328 |
. . . . . . . 8
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) |
19 | 18 | mpteq2dv 5172 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)) |
20 | 19 | eleq1d 2823 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))) |
21 | 17, 20 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1)) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))) |
22 | 21 | imbi2d 340 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))) |
23 | | sseq1 3942 |
. . . . . 6
⊢ (𝑤 = 𝐵 → (𝑤 ⊆ 𝐵 ↔ 𝐵 ⊆ 𝐵)) |
24 | | sumeq1 15328 |
. . . . . . . 8
⊢ (𝑤 = 𝐵 → Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
25 | 24 | mpteq2dv 5172 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶)) |
26 | 25 | eleq1d 2823 |
. . . . . 6
⊢ (𝑤 = 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝑂(1))) |
27 | 23, 26 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = 𝐵 → ((𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1)) ↔ (𝐵 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝑂(1)))) |
28 | 27 | imbi2d 340 |
. . . 4
⊢ (𝑤 = 𝐵 → ((𝜑 → (𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → (𝐵 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝑂(1))))) |
29 | | fsumo1.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
30 | | 0cn 10898 |
. . . . . 6
⊢ 0 ∈
ℂ |
31 | | o1const 15257 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 0 ∈
ℂ) → (𝑥 ∈
𝐴 ↦ 0) ∈
𝑂(1)) |
32 | 29, 30, 31 | sylancl 585 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 0) ∈
𝑂(1)) |
33 | 32 | a1d 25 |
. . . 4
⊢ (𝜑 → (∅ ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 0) ∈
𝑂(1))) |
34 | | ssun1 4102 |
. . . . . . . . . 10
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) |
35 | | sstr 3925 |
. . . . . . . . . 10
⊢ ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵) → 𝑦 ⊆ 𝐵) |
36 | 34, 35 | mpan 686 |
. . . . . . . . 9
⊢ ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → 𝑦 ⊆ 𝐵) |
37 | 36 | imim1i 63 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1))) |
38 | | simprl 767 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ¬ 𝑧 ∈ 𝑦) |
39 | | disjsn 4644 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
40 | 38, 39 | sylibr 233 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∩ {𝑧}) = ∅) |
41 | 40 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∩ {𝑧}) = ∅) |
42 | | eqidd 2739 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧})) |
43 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝐵 ∈ Fin) |
44 | | simprr 769 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∪ {𝑧}) ⊆ 𝐵) |
45 | 43, 44 | ssfid 8971 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∪ {𝑧}) ∈ Fin) |
46 | 45 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∪ {𝑧}) ∈ Fin) |
47 | 44 | sselda 3917 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘 ∈ 𝐵) |
48 | 47 | adantlr 711 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘 ∈ 𝐵) |
49 | | fsumo1.3 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ 𝑉) |
50 | 49 | anass1rs 651 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
51 | | fsumo1.4 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) |
52 | 50, 51 | o1mptrcl 15260 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
53 | 52 | an32s 648 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
54 | 53 | adantllr 715 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
55 | 48, 54 | syldan 590 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐶 ∈ ℂ) |
56 | 41, 42, 46, 55 | fsumsplit 15381 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (Σ𝑘 ∈ 𝑦 𝐶 + Σ𝑘 ∈ {𝑧}𝐶)) |
57 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑤𝐶 |
58 | | nfcsb1v 3853 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘⦋𝑤 / 𝑘⦌𝐶 |
59 | | csbeq1a 3842 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑤 → 𝐶 = ⦋𝑤 / 𝑘⦌𝐶) |
60 | 57, 58, 59 | cbvsumi 15337 |
. . . . . . . . . . . . . . . . . 18
⊢
Σ𝑘 ∈
{𝑧}𝐶 = Σ𝑤 ∈ {𝑧}⦋𝑤 / 𝑘⦌𝐶 |
61 | 44 | unssbd 4118 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → {𝑧} ⊆ 𝐵) |
62 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑧 ∈ V |
63 | 62 | snss 4716 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ 𝐵 ↔ {𝑧} ⊆ 𝐵) |
64 | 61, 63 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝑧 ∈ 𝐵) |
65 | 64 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝑧 ∈ 𝐵) |
66 | 54 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
67 | | nfcsb1v 3853 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐶 |
68 | 67 | nfel1 2922 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ |
69 | | csbeq1a 3842 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑧 → 𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
70 | 69 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑧 → (𝐶 ∈ ℂ ↔ ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ)) |
71 | 68, 70 | rspc 3539 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝐵 → (∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ → ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ)) |
72 | 65, 66, 71 | sylc 65 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) |
73 | | csbeq1 3831 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑧 → ⦋𝑤 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
74 | 73 | sumsn 15386 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ 𝐵 ∧ ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) → Σ𝑤 ∈ {𝑧}⦋𝑤 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
75 | 65, 72, 74 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑤 ∈ {𝑧}⦋𝑤 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
76 | 60, 75 | eqtrid 2790 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ {𝑧}𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
77 | 76 | oveq2d 7271 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (Σ𝑘 ∈ 𝑦 𝐶 + Σ𝑘 ∈ {𝑧}𝐶) = (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) |
78 | 56, 77 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) |
79 | 78 | mpteq2dva 5170 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = (𝑥 ∈ 𝐴 ↦ (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶))) |
80 | 29 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝐴 ⊆ ℝ) |
81 | | reex 10893 |
. . . . . . . . . . . . . . . . 17
⊢ ℝ
∈ V |
82 | 81 | ssex 5240 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
83 | 80, 82 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝐴 ∈ V) |
84 | | sumex 15327 |
. . . . . . . . . . . . . . . 16
⊢
Σ𝑘 ∈
𝑦 𝐶 ∈ V |
85 | 84 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝑦 𝐶 ∈ V) |
86 | | eqidd 2739 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶)) |
87 | | eqidd 2739 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) = (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶)) |
88 | 83, 85, 72, 86, 87 | offval2 7531 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∘f + (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶)) = (𝑥 ∈ 𝐴 ↦ (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶))) |
89 | 79, 88 | eqtr4d 2781 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∘f + (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶))) |
90 | 89 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∘f + (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶))) |
91 | | id 22 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1)) |
92 | 51 | ralrimiva 3107 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑘 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) |
93 | 92 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑘 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) |
94 | | nfcv 2906 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘𝐴 |
95 | 94, 67 | nfmpt 5177 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) |
96 | 95 | nfel1 2922 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ∈ 𝑂(1) |
97 | 69 | mpteq2dv 5172 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑧 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶)) |
98 | 97 | eleq1d 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ∈ 𝑂(1))) |
99 | 96, 98 | rspc 3539 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝐵 → (∀𝑘 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ∈ 𝑂(1))) |
100 | 64, 93, 99 | sylc 65 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ∈ 𝑂(1)) |
101 | | o1add 15251 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ∈ 𝑂(1)) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∘f + (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶)) ∈ 𝑂(1)) |
102 | 91, 100, 101 | syl2anr 596 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1)) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∘f + (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶)) ∈ 𝑂(1)) |
103 | 90, 102 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)) |
104 | 103 | ex 412 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))) |
105 | 104 | expr 456 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))) |
106 | 105 | a2d 29 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) → (((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))) |
107 | 37, 106 | syl5 34 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) → ((𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))) |
108 | 107 | expcom 413 |
. . . . . 6
⊢ (¬
𝑧 ∈ 𝑦 → (𝜑 → ((𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))) |
109 | 108 | a2d 29 |
. . . . 5
⊢ (¬
𝑧 ∈ 𝑦 → ((𝜑 → (𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1))) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))) |
110 | 109 | adantl 481 |
. . . 4
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((𝜑 → (𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1))) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))) |
111 | 10, 16, 22, 28, 33, 110 | findcard2s 8910 |
. . 3
⊢ (𝐵 ∈ Fin → (𝜑 → (𝐵 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝑂(1)))) |
112 | 2, 111 | mpcom 38 |
. 2
⊢ (𝜑 → (𝐵 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝑂(1))) |
113 | 1, 112 | mpi 20 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝑂(1)) |