| Step | Hyp | Ref
| Expression |
| 1 | | ssid 4006 |
. 2
⊢ 𝐵 ⊆ 𝐵 |
| 2 | | fsumo1.2 |
. . 3
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 3 | | sseq1 4009 |
. . . . . 6
⊢ (𝑤 = ∅ → (𝑤 ⊆ 𝐵 ↔ ∅ ⊆ 𝐵)) |
| 4 | | sumeq1 15725 |
. . . . . . . . 9
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑘 ∈ ∅ 𝐶) |
| 5 | | sum0 15757 |
. . . . . . . . 9
⊢
Σ𝑘 ∈
∅ 𝐶 =
0 |
| 6 | 4, 5 | eqtrdi 2793 |
. . . . . . . 8
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 𝐶 = 0) |
| 7 | 6 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑤 = ∅ → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ 0)) |
| 8 | 7 | eleq1d 2826 |
. . . . . 6
⊢ (𝑤 = ∅ → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ 0) ∈
𝑂(1))) |
| 9 | 3, 8 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = ∅ → ((𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1)) ↔ (∅
⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 0) ∈
𝑂(1)))) |
| 10 | 9 | imbi2d 340 |
. . . 4
⊢ (𝑤 = ∅ → ((𝜑 → (𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → (∅ ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 0) ∈
𝑂(1))))) |
| 11 | | sseq1 4009 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝑤 ⊆ 𝐵 ↔ 𝑦 ⊆ 𝐵)) |
| 12 | | sumeq1 15725 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑘 ∈ 𝑦 𝐶) |
| 13 | 12 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶)) |
| 14 | 13 | eleq1d 2826 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1))) |
| 15 | 11, 14 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = 𝑦 → ((𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1)) ↔ (𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1)))) |
| 16 | 15 | imbi2d 340 |
. . . 4
⊢ (𝑤 = 𝑦 → ((𝜑 → (𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → (𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1))))) |
| 17 | | sseq1 4009 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 ⊆ 𝐵 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) |
| 18 | | sumeq1 15725 |
. . . . . . . 8
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) |
| 19 | 18 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶)) |
| 20 | 19 | eleq1d 2826 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))) |
| 21 | 17, 20 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1)) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))) |
| 22 | 21 | imbi2d 340 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))) |
| 23 | | sseq1 4009 |
. . . . . 6
⊢ (𝑤 = 𝐵 → (𝑤 ⊆ 𝐵 ↔ 𝐵 ⊆ 𝐵)) |
| 24 | | sumeq1 15725 |
. . . . . . . 8
⊢ (𝑤 = 𝐵 → Σ𝑘 ∈ 𝑤 𝐶 = Σ𝑘 ∈ 𝐵 𝐶) |
| 25 | 24 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑤 = 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶)) |
| 26 | 25 | eleq1d 2826 |
. . . . . 6
⊢ (𝑤 = 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝑂(1))) |
| 27 | 23, 26 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = 𝐵 → ((𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1)) ↔ (𝐵 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝑂(1)))) |
| 28 | 27 | imbi2d 340 |
. . . 4
⊢ (𝑤 = 𝐵 → ((𝜑 → (𝑤 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑤 𝐶) ∈ 𝑂(1))) ↔ (𝜑 → (𝐵 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝑂(1))))) |
| 29 | | fsumo1.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 30 | | 0cn 11253 |
. . . . . 6
⊢ 0 ∈
ℂ |
| 31 | | o1const 15656 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧ 0 ∈
ℂ) → (𝑥 ∈
𝐴 ↦ 0) ∈
𝑂(1)) |
| 32 | 29, 30, 31 | sylancl 586 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 0) ∈
𝑂(1)) |
| 33 | 32 | a1d 25 |
. . . 4
⊢ (𝜑 → (∅ ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ 0) ∈
𝑂(1))) |
| 34 | | ssun1 4178 |
. . . . . . . . . 10
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) |
| 35 | | sstr 3992 |
. . . . . . . . . 10
⊢ ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵) → 𝑦 ⊆ 𝐵) |
| 36 | 34, 35 | mpan 690 |
. . . . . . . . 9
⊢ ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → 𝑦 ⊆ 𝐵) |
| 37 | 36 | imim1i 63 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1))) |
| 38 | | simprl 771 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ¬ 𝑧 ∈ 𝑦) |
| 39 | | disjsn 4711 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
| 40 | 38, 39 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∩ {𝑧}) = ∅) |
| 41 | 40 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∩ {𝑧}) = ∅) |
| 42 | | eqidd 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧})) |
| 43 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝐵 ∈ Fin) |
| 44 | | simprr 773 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∪ {𝑧}) ⊆ 𝐵) |
| 45 | 43, 44 | ssfid 9301 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 46 | 45 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 47 | 44 | sselda 3983 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘 ∈ 𝐵) |
| 48 | 47 | adantlr 715 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘 ∈ 𝐵) |
| 49 | | fsumo1.3 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ 𝑉) |
| 50 | 49 | anass1rs 655 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝑉) |
| 51 | | fsumo1.4 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) |
| 52 | 50, 51 | o1mptrcl 15659 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 53 | 52 | an32s 652 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 54 | 53 | adantllr 719 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
| 55 | 48, 54 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐶 ∈ ℂ) |
| 56 | 41, 42, 46, 55 | fsumsplit 15777 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (Σ𝑘 ∈ 𝑦 𝐶 + Σ𝑘 ∈ {𝑧}𝐶)) |
| 57 | | csbeq1a 3913 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑤 → 𝐶 = ⦋𝑤 / 𝑘⦌𝐶) |
| 58 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑤𝐶 |
| 59 | | nfcsb1v 3923 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘⦋𝑤 / 𝑘⦌𝐶 |
| 60 | 57, 58, 59 | cbvsum 15731 |
. . . . . . . . . . . . . . . . . 18
⊢
Σ𝑘 ∈
{𝑧}𝐶 = Σ𝑤 ∈ {𝑧}⦋𝑤 / 𝑘⦌𝐶 |
| 61 | 44 | unssbd 4194 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → {𝑧} ⊆ 𝐵) |
| 62 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑧 ∈ V |
| 63 | 62 | snss 4785 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ 𝐵 ↔ {𝑧} ⊆ 𝐵) |
| 64 | 61, 63 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝑧 ∈ 𝐵) |
| 65 | 64 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝑧 ∈ 𝐵) |
| 66 | 54 | ralrimiva 3146 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
| 67 | | nfcsb1v 3923 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐶 |
| 68 | 67 | nfel1 2922 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ |
| 69 | | csbeq1a 3913 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 𝑧 → 𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
| 70 | 69 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑧 → (𝐶 ∈ ℂ ↔ ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ)) |
| 71 | 68, 70 | rspc 3610 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝐵 → (∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ → ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ)) |
| 72 | 65, 66, 71 | sylc 65 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) |
| 73 | | csbeq1 3902 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑧 → ⦋𝑤 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
| 74 | 73 | sumsn 15782 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ 𝐵 ∧ ⦋𝑧 / 𝑘⦌𝐶 ∈ ℂ) → Σ𝑤 ∈ {𝑧}⦋𝑤 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
| 75 | 65, 72, 74 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑤 ∈ {𝑧}⦋𝑤 / 𝑘⦌𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
| 76 | 60, 75 | eqtrid 2789 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ {𝑧}𝐶 = ⦋𝑧 / 𝑘⦌𝐶) |
| 77 | 76 | oveq2d 7447 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → (Σ𝑘 ∈ 𝑦 𝐶 + Σ𝑘 ∈ {𝑧}𝐶) = (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) |
| 78 | 56, 77 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶 = (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶)) |
| 79 | 78 | mpteq2dva 5242 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = (𝑥 ∈ 𝐴 ↦ (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶))) |
| 80 | 29 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝐴 ⊆ ℝ) |
| 81 | | reex 11246 |
. . . . . . . . . . . . . . . . 17
⊢ ℝ
∈ V |
| 82 | 81 | ssex 5321 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ⊆ ℝ → 𝐴 ∈ V) |
| 83 | 80, 82 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → 𝐴 ∈ V) |
| 84 | | sumex 15724 |
. . . . . . . . . . . . . . . 16
⊢
Σ𝑘 ∈
𝑦 𝐶 ∈ V |
| 85 | 84 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ 𝑥 ∈ 𝐴) → Σ𝑘 ∈ 𝑦 𝐶 ∈ V) |
| 86 | | eqidd 2738 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) = (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶)) |
| 87 | | eqidd 2738 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) = (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶)) |
| 88 | 83, 85, 72, 86, 87 | offval2 7717 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∘f + (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶)) = (𝑥 ∈ 𝐴 ↦ (Σ𝑘 ∈ 𝑦 𝐶 + ⦋𝑧 / 𝑘⦌𝐶))) |
| 89 | 79, 88 | eqtr4d 2780 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∘f + (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶))) |
| 90 | 89 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) = ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∘f + (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶))) |
| 91 | | id 22 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1)) |
| 92 | 51 | ralrimiva 3146 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑘 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) |
| 93 | 92 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ∀𝑘 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) |
| 94 | | nfcv 2905 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘𝐴 |
| 95 | 94, 67 | nfmpt 5249 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) |
| 96 | 95 | nfel1 2922 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ∈ 𝑂(1) |
| 97 | 69 | mpteq2dv 5244 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑧 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶)) |
| 98 | 97 | eleq1d 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) ↔ (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ∈ 𝑂(1))) |
| 99 | 96, 98 | rspc 3610 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝐵 → (∀𝑘 ∈ 𝐵 (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ∈ 𝑂(1))) |
| 100 | 64, 93, 99 | sylc 65 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ∈ 𝑂(1)) |
| 101 | | o1add 15650 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1) ∧ (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶) ∈ 𝑂(1)) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∘f + (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶)) ∈ 𝑂(1)) |
| 102 | 91, 100, 101 | syl2anr 597 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1)) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∘f + (𝑥 ∈ 𝐴 ↦ ⦋𝑧 / 𝑘⦌𝐶)) ∈ 𝑂(1)) |
| 103 | 90, 102 | eqeltrd 2841 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) ∧ (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1)) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)) |
| 104 | 103 | ex 412 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (¬ 𝑧 ∈ 𝑦 ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐵)) → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))) |
| 105 | 104 | expr 456 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1) → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))) |
| 106 | 105 | a2d 29 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) → (((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))) |
| 107 | 37, 106 | syl5 34 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) → ((𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1)))) |
| 108 | 107 | expcom 413 |
. . . . . 6
⊢ (¬
𝑧 ∈ 𝑦 → (𝜑 → ((𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))) |
| 109 | 108 | a2d 29 |
. . . . 5
⊢ (¬
𝑧 ∈ 𝑦 → ((𝜑 → (𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1))) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))) |
| 110 | 109 | adantl 481 |
. . . 4
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((𝜑 → (𝑦 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝑦 𝐶) ∈ 𝑂(1))) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐶) ∈ 𝑂(1))))) |
| 111 | 10, 16, 22, 28, 33, 110 | findcard2s 9205 |
. . 3
⊢ (𝐵 ∈ Fin → (𝜑 → (𝐵 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝑂(1)))) |
| 112 | 2, 111 | mpcom 38 |
. 2
⊢ (𝜑 → (𝐵 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝑂(1))) |
| 113 | 1, 112 | mpi 20 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ Σ𝑘 ∈ 𝐵 𝐶) ∈ 𝑂(1)) |