Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aov0nbovbi | Structured version Visualization version GIF version |
Description: The operation's value on an ordered pair is an element of a set if and only if the alternative value of the operation on this ordered pair is an element of that set, if the set does not contain the empty set. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aov0nbovbi | ⊢ (∅ ∉ 𝐶 → ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | afv0nbfvbi 44599 | . 2 ⊢ (∅ ∉ 𝐶 → ((𝐹'''〈𝐴, 𝐵〉) ∈ 𝐶 ↔ (𝐹‘〈𝐴, 𝐵〉) ∈ 𝐶)) | |
2 | df-aov 44569 | . . 3 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
3 | 2 | eleq1i 2829 | . 2 ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐹'''〈𝐴, 𝐵〉) ∈ 𝐶) |
4 | df-ov 7271 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
5 | 4 | eleq1i 2829 | . 2 ⊢ ((𝐴𝐹𝐵) ∈ 𝐶 ↔ (𝐹‘〈𝐴, 𝐵〉) ∈ 𝐶) |
6 | 1, 3, 5 | 3bitr4g 314 | 1 ⊢ (∅ ∉ 𝐶 → ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 ∉ wnel 3049 ∅c0 4257 〈cop 4568 ‘cfv 6427 (class class class)co 7268 '''cafv 44565 ((caov 44566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pr 5351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-br 5075 df-opab 5137 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-res 5597 df-iota 6385 df-fun 6429 df-fv 6435 df-ov 7271 df-aiota 44533 df-dfat 44567 df-afv 44568 df-aov 44569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |