Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aov0nbovbi Structured version   Visualization version   GIF version

Theorem aov0nbovbi 47300
Description: The operation's value on an ordered pair is an element of a set if and only if the alternative value of the operation on this ordered pair is an element of that set, if the set does not contain the empty set. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
aov0nbovbi (∅ ∉ 𝐶 → ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶))

Proof of Theorem aov0nbovbi
StepHypRef Expression
1 afv0nbfvbi 47256 . 2 (∅ ∉ 𝐶 → ((𝐹'''⟨𝐴, 𝐵⟩) ∈ 𝐶 ↔ (𝐹‘⟨𝐴, 𝐵⟩) ∈ 𝐶))
2 df-aov 47226 . . 3 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
32eleq1i 2822 . 2 ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐹'''⟨𝐴, 𝐵⟩) ∈ 𝐶)
4 df-ov 7355 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
54eleq1i 2822 . 2 ((𝐴𝐹𝐵) ∈ 𝐶 ↔ (𝐹‘⟨𝐴, 𝐵⟩) ∈ 𝐶)
61, 3, 53bitr4g 314 1 (∅ ∉ 𝐶 → ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2111  wnel 3032  c0 4282  cop 4581  cfv 6487  (class class class)co 7352  '''cafv 47222   ((caov 47223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6443  df-fun 6489  df-fv 6495  df-ov 7355  df-aiota 47190  df-dfat 47224  df-afv 47225  df-aov 47226
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator