![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aov0nbovbi | Structured version Visualization version GIF version |
Description: The operation's value on an ordered pair is an element of a set if and only if the alternative value of the operation on this ordered pair is an element of that set, if the set does not contain the empty set. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aov0nbovbi | ⊢ (∅ ∉ 𝐶 → ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | afv0nbfvbi 46593 | . 2 ⊢ (∅ ∉ 𝐶 → ((𝐹'''⟨𝐴, 𝐵⟩) ∈ 𝐶 ↔ (𝐹‘⟨𝐴, 𝐵⟩) ∈ 𝐶)) | |
2 | df-aov 46563 | . . 3 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩) | |
3 | 2 | eleq1i 2816 | . 2 ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐹'''⟨𝐴, 𝐵⟩) ∈ 𝐶) |
4 | df-ov 7418 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩) | |
5 | 4 | eleq1i 2816 | . 2 ⊢ ((𝐴𝐹𝐵) ∈ 𝐶 ↔ (𝐹‘⟨𝐴, 𝐵⟩) ∈ 𝐶) |
6 | 1, 3, 5 | 3bitr4g 313 | 1 ⊢ (∅ ∉ 𝐶 → ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2098 ∉ wnel 3036 ∅c0 4318 ⟨cop 4630 ‘cfv 6542 (class class class)co 7415 '''cafv 46559 ((caov 46560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-br 5144 df-opab 5206 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-res 5684 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7418 df-aiota 46527 df-dfat 46561 df-afv 46562 df-aov 46563 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |