Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aov0nbovbi Structured version   Visualization version   GIF version

Theorem aov0nbovbi 47189
Description: The operation's value on an ordered pair is an element of a set if and only if the alternative value of the operation on this ordered pair is an element of that set, if the set does not contain the empty set. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
aov0nbovbi (∅ ∉ 𝐶 → ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶))

Proof of Theorem aov0nbovbi
StepHypRef Expression
1 afv0nbfvbi 47145 . 2 (∅ ∉ 𝐶 → ((𝐹'''⟨𝐴, 𝐵⟩) ∈ 𝐶 ↔ (𝐹‘⟨𝐴, 𝐵⟩) ∈ 𝐶))
2 df-aov 47115 . . 3 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
32eleq1i 2819 . 2 ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐹'''⟨𝐴, 𝐵⟩) ∈ 𝐶)
4 df-ov 7372 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
54eleq1i 2819 . 2 ((𝐴𝐹𝐵) ∈ 𝐶 ↔ (𝐹‘⟨𝐴, 𝐵⟩) ∈ 𝐶)
61, 3, 53bitr4g 314 1 (∅ ∉ 𝐶 → ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wnel 3029  c0 4292  cop 4591  cfv 6499  (class class class)co 7369  '''cafv 47111   ((caov 47112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-res 5643  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-aiota 47079  df-dfat 47113  df-afv 47114  df-aov 47115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator