| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aov0nbovbi | Structured version Visualization version GIF version | ||
| Description: The operation's value on an ordered pair is an element of a set if and only if the alternative value of the operation on this ordered pair is an element of that set, if the set does not contain the empty set. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| aov0nbovbi | ⊢ (∅ ∉ 𝐶 → ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | afv0nbfvbi 47160 | . 2 ⊢ (∅ ∉ 𝐶 → ((𝐹'''〈𝐴, 𝐵〉) ∈ 𝐶 ↔ (𝐹‘〈𝐴, 𝐵〉) ∈ 𝐶)) | |
| 2 | df-aov 47130 | . . 3 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
| 3 | 2 | eleq1i 2826 | . 2 ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐹'''〈𝐴, 𝐵〉) ∈ 𝐶) |
| 4 | df-ov 7413 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 5 | 4 | eleq1i 2826 | . 2 ⊢ ((𝐴𝐹𝐵) ∈ 𝐶 ↔ (𝐹‘〈𝐴, 𝐵〉) ∈ 𝐶) |
| 6 | 1, 3, 5 | 3bitr4g 314 | 1 ⊢ (∅ ∉ 𝐶 → ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∉ wnel 3037 ∅c0 4313 〈cop 4612 ‘cfv 6536 (class class class)co 7410 '''cafv 47126 ((caov 47127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-res 5671 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-aiota 47094 df-dfat 47128 df-afv 47129 df-aov 47130 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |