Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovovn0oveq Structured version   Visualization version   GIF version

Theorem aovovn0oveq 47190
Description: If the operation's value at an argument is not the empty set, it equals the value of the alternative operation at this argument. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
aovovn0oveq ((𝐴𝐹𝐵) ≠ ∅ → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵))

Proof of Theorem aovovn0oveq
StepHypRef Expression
1 df-ov 7413 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
21neeq1i 2997 . 2 ((𝐴𝐹𝐵) ≠ ∅ ↔ (𝐹‘⟨𝐴, 𝐵⟩) ≠ ∅)
3 afvfvn0fveq 47146 . . 3 ((𝐹‘⟨𝐴, 𝐵⟩) ≠ ∅ → (𝐹'''⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐴, 𝐵⟩))
4 df-aov 47117 . . 3 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
53, 4, 13eqtr4g 2796 . 2 ((𝐹‘⟨𝐴, 𝐵⟩) ≠ ∅ → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵))
62, 5sylbi 217 1 ((𝐴𝐹𝐵) ≠ ∅ → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2933  c0 4313  cop 4612  cfv 6536  (class class class)co 7410  '''cafv 47113   ((caov 47114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-res 5671  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-aiota 47081  df-dfat 47115  df-afv 47116  df-aov 47117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator