| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aovovn0oveq | Structured version Visualization version GIF version | ||
| Description: If the operation's value at an argument is not the empty set, it equals the value of the alternative operation at this argument. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| aovovn0oveq | ⊢ ((𝐴𝐹𝐵) ≠ ∅ → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7356 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | 1 | neeq1i 2989 | . 2 ⊢ ((𝐴𝐹𝐵) ≠ ∅ ↔ (𝐹‘〈𝐴, 𝐵〉) ≠ ∅) |
| 3 | afvfvn0fveq 47135 | . . 3 ⊢ ((𝐹‘〈𝐴, 𝐵〉) ≠ ∅ → (𝐹'''〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) | |
| 4 | df-aov 47106 | . . 3 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
| 5 | 3, 4, 1 | 3eqtr4g 2789 | . 2 ⊢ ((𝐹‘〈𝐴, 𝐵〉) ≠ ∅ → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
| 6 | 2, 5 | sylbi 217 | 1 ⊢ ((𝐴𝐹𝐵) ≠ ∅ → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 ∅c0 4286 〈cop 4585 ‘cfv 6486 (class class class)co 7353 '''cafv 47102 ((caov 47103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-res 5635 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-aiota 47070 df-dfat 47104 df-afv 47105 df-aov 47106 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |