Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aovov0bi | Structured version Visualization version GIF version |
Description: The operation's value on an ordered pair is the empty set if and only if the alternative value of the operation on this ordered pair is either the empty set or the universal class. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aovov0bi | ⊢ ((𝐴𝐹𝐵) = ∅ ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7258 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | 1 | eqeq1i 2743 | . 2 ⊢ ((𝐴𝐹𝐵) = ∅ ↔ (𝐹‘〈𝐴, 𝐵〉) = ∅) |
3 | afvfv0bi 44531 | . 2 ⊢ ((𝐹‘〈𝐴, 𝐵〉) = ∅ ↔ ((𝐹'''〈𝐴, 𝐵〉) = ∅ ∨ (𝐹'''〈𝐴, 𝐵〉) = V)) | |
4 | df-aov 44500 | . . . . 5 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
5 | 4 | eqeq1i 2743 | . . . 4 ⊢ ( ((𝐴𝐹𝐵)) = ∅ ↔ (𝐹'''〈𝐴, 𝐵〉) = ∅) |
6 | 5 | bicomi 223 | . . 3 ⊢ ((𝐹'''〈𝐴, 𝐵〉) = ∅ ↔ ((𝐴𝐹𝐵)) = ∅) |
7 | 4 | eqeq1i 2743 | . . . 4 ⊢ ( ((𝐴𝐹𝐵)) = V ↔ (𝐹'''〈𝐴, 𝐵〉) = V) |
8 | 7 | bicomi 223 | . . 3 ⊢ ((𝐹'''〈𝐴, 𝐵〉) = V ↔ ((𝐴𝐹𝐵)) = V) |
9 | 6, 8 | orbi12i 911 | . 2 ⊢ (((𝐹'''〈𝐴, 𝐵〉) = ∅ ∨ (𝐹'''〈𝐴, 𝐵〉) = V) ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) |
10 | 2, 3, 9 | 3bitri 296 | 1 ⊢ ((𝐴𝐹𝐵) = ∅ ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 = wceq 1539 Vcvv 3422 ∅c0 4253 〈cop 4564 ‘cfv 6418 (class class class)co 7255 '''cafv 44496 ((caov 44497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-aiota 44464 df-dfat 44498 df-afv 44499 df-aov 44500 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |