| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aovov0bi | Structured version Visualization version GIF version | ||
| Description: The operation's value on an ordered pair is the empty set if and only if the alternative value of the operation on this ordered pair is either the empty set or the universal class. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| aovov0bi | ⊢ ((𝐴𝐹𝐵) = ∅ ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7392 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | 1 | eqeq1i 2735 | . 2 ⊢ ((𝐴𝐹𝐵) = ∅ ↔ (𝐹‘〈𝐴, 𝐵〉) = ∅) |
| 3 | afvfv0bi 47143 | . 2 ⊢ ((𝐹‘〈𝐴, 𝐵〉) = ∅ ↔ ((𝐹'''〈𝐴, 𝐵〉) = ∅ ∨ (𝐹'''〈𝐴, 𝐵〉) = V)) | |
| 4 | df-aov 47112 | . . . . 5 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
| 5 | 4 | eqeq1i 2735 | . . . 4 ⊢ ( ((𝐴𝐹𝐵)) = ∅ ↔ (𝐹'''〈𝐴, 𝐵〉) = ∅) |
| 6 | 5 | bicomi 224 | . . 3 ⊢ ((𝐹'''〈𝐴, 𝐵〉) = ∅ ↔ ((𝐴𝐹𝐵)) = ∅) |
| 7 | 4 | eqeq1i 2735 | . . . 4 ⊢ ( ((𝐴𝐹𝐵)) = V ↔ (𝐹'''〈𝐴, 𝐵〉) = V) |
| 8 | 7 | bicomi 224 | . . 3 ⊢ ((𝐹'''〈𝐴, 𝐵〉) = V ↔ ((𝐴𝐹𝐵)) = V) |
| 9 | 6, 8 | orbi12i 914 | . 2 ⊢ (((𝐹'''〈𝐴, 𝐵〉) = ∅ ∨ (𝐹'''〈𝐴, 𝐵〉) = V) ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) |
| 10 | 2, 3, 9 | 3bitri 297 | 1 ⊢ ((𝐴𝐹𝐵) = ∅ ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 Vcvv 3450 ∅c0 4298 〈cop 4597 ‘cfv 6513 (class class class)co 7389 '''cafv 47108 ((caov 47109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-res 5652 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-aiota 47076 df-dfat 47110 df-afv 47111 df-aov 47112 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |