Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovov0bi Structured version   Visualization version   GIF version

Theorem aovov0bi 47043
Description: The operation's value on an ordered pair is the empty set if and only if the alternative value of the operation on this ordered pair is either the empty set or the universal class. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
aovov0bi ((𝐴𝐹𝐵) = ∅ ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V))

Proof of Theorem aovov0bi
StepHypRef Expression
1 df-ov 7448 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
21eqeq1i 2739 . 2 ((𝐴𝐹𝐵) = ∅ ↔ (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
3 afvfv0bi 46999 . 2 ((𝐹‘⟨𝐴, 𝐵⟩) = ∅ ↔ ((𝐹'''⟨𝐴, 𝐵⟩) = ∅ ∨ (𝐹'''⟨𝐴, 𝐵⟩) = V))
4 df-aov 46968 . . . . 5 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
54eqeq1i 2739 . . . 4 ( ((𝐴𝐹𝐵)) = ∅ ↔ (𝐹'''⟨𝐴, 𝐵⟩) = ∅)
65bicomi 224 . . 3 ((𝐹'''⟨𝐴, 𝐵⟩) = ∅ ↔ ((𝐴𝐹𝐵)) = ∅)
74eqeq1i 2739 . . . 4 ( ((𝐴𝐹𝐵)) = V ↔ (𝐹'''⟨𝐴, 𝐵⟩) = V)
87bicomi 224 . . 3 ((𝐹'''⟨𝐴, 𝐵⟩) = V ↔ ((𝐴𝐹𝐵)) = V)
96, 8orbi12i 913 . 2 (((𝐹'''⟨𝐴, 𝐵⟩) = ∅ ∨ (𝐹'''⟨𝐴, 𝐵⟩) = V) ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V))
102, 3, 93bitri 297 1 ((𝐴𝐹𝐵) = ∅ ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 846   = wceq 1537  Vcvv 3482  c0 4347  cop 4654  cfv 6572  (class class class)co 7445  '''cafv 46964   ((caov 46965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pr 5450
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-br 5170  df-opab 5232  df-id 5597  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-res 5711  df-iota 6524  df-fun 6574  df-fv 6580  df-ov 7448  df-aiota 46932  df-dfat 46966  df-afv 46967  df-aov 46968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator