| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aovov0bi | Structured version Visualization version GIF version | ||
| Description: The operation's value on an ordered pair is the empty set if and only if the alternative value of the operation on this ordered pair is either the empty set or the universal class. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| aovov0bi | ⊢ ((𝐴𝐹𝐵) = ∅ ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7355 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | 1 | eqeq1i 2736 | . 2 ⊢ ((𝐴𝐹𝐵) = ∅ ↔ (𝐹‘〈𝐴, 𝐵〉) = ∅) |
| 3 | afvfv0bi 47257 | . 2 ⊢ ((𝐹‘〈𝐴, 𝐵〉) = ∅ ↔ ((𝐹'''〈𝐴, 𝐵〉) = ∅ ∨ (𝐹'''〈𝐴, 𝐵〉) = V)) | |
| 4 | df-aov 47226 | . . . . 5 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
| 5 | 4 | eqeq1i 2736 | . . . 4 ⊢ ( ((𝐴𝐹𝐵)) = ∅ ↔ (𝐹'''〈𝐴, 𝐵〉) = ∅) |
| 6 | 5 | bicomi 224 | . . 3 ⊢ ((𝐹'''〈𝐴, 𝐵〉) = ∅ ↔ ((𝐴𝐹𝐵)) = ∅) |
| 7 | 4 | eqeq1i 2736 | . . . 4 ⊢ ( ((𝐴𝐹𝐵)) = V ↔ (𝐹'''〈𝐴, 𝐵〉) = V) |
| 8 | 7 | bicomi 224 | . . 3 ⊢ ((𝐹'''〈𝐴, 𝐵〉) = V ↔ ((𝐴𝐹𝐵)) = V) |
| 9 | 6, 8 | orbi12i 914 | . 2 ⊢ (((𝐹'''〈𝐴, 𝐵〉) = ∅ ∨ (𝐹'''〈𝐴, 𝐵〉) = V) ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) |
| 10 | 2, 3, 9 | 3bitri 297 | 1 ⊢ ((𝐴𝐹𝐵) = ∅ ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1541 Vcvv 3436 ∅c0 4282 〈cop 4581 ‘cfv 6487 (class class class)co 7352 '''cafv 47222 ((caov 47223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-iota 6443 df-fun 6489 df-fv 6495 df-ov 7355 df-aiota 47190 df-dfat 47224 df-afv 47225 df-aov 47226 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |