Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovov0bi Structured version   Visualization version   GIF version

Theorem aovov0bi 43280
Description: The operation's value on an ordered pair is the empty set if and only if the alternative value of the operation on this ordered pair is either the empty set or the universal class. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
aovov0bi ((𝐴𝐹𝐵) = ∅ ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V))

Proof of Theorem aovov0bi
StepHypRef Expression
1 df-ov 7153 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
21eqeq1i 2831 . 2 ((𝐴𝐹𝐵) = ∅ ↔ (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
3 afvfv0bi 43236 . 2 ((𝐹‘⟨𝐴, 𝐵⟩) = ∅ ↔ ((𝐹'''⟨𝐴, 𝐵⟩) = ∅ ∨ (𝐹'''⟨𝐴, 𝐵⟩) = V))
4 df-aov 43205 . . . . 5 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
54eqeq1i 2831 . . . 4 ( ((𝐴𝐹𝐵)) = ∅ ↔ (𝐹'''⟨𝐴, 𝐵⟩) = ∅)
65bicomi 225 . . 3 ((𝐹'''⟨𝐴, 𝐵⟩) = ∅ ↔ ((𝐴𝐹𝐵)) = ∅)
74eqeq1i 2831 . . . 4 ( ((𝐴𝐹𝐵)) = V ↔ (𝐹'''⟨𝐴, 𝐵⟩) = V)
87bicomi 225 . . 3 ((𝐹'''⟨𝐴, 𝐵⟩) = V ↔ ((𝐴𝐹𝐵)) = V)
96, 8orbi12i 910 . 2 (((𝐹'''⟨𝐴, 𝐵⟩) = ∅ ∨ (𝐹'''⟨𝐴, 𝐵⟩) = V) ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V))
102, 3, 93bitri 298 1 ((𝐴𝐹𝐵) = ∅ ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wo 843   = wceq 1530  Vcvv 3500  c0 4295  cop 4570  cfv 6354  (class class class)co 7150  '''cafv 43201   ((caov 43202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-int 4875  df-br 5064  df-opab 5126  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-res 5566  df-iota 6313  df-fun 6356  df-fv 6362  df-ov 7153  df-aiota 43170  df-dfat 43203  df-afv 43204  df-aov 43205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator