![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aovov0bi | Structured version Visualization version GIF version |
Description: The operation's value on an ordered pair is the empty set if and only if the alternative value of the operation on this ordered pair is either the empty set or the universal class. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aovov0bi | ⊢ ((𝐴𝐹𝐵) = ∅ ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 6881 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | 1 | eqeq1i 2804 | . 2 ⊢ ((𝐴𝐹𝐵) = ∅ ↔ (𝐹‘〈𝐴, 𝐵〉) = ∅) |
3 | afvfv0bi 42006 | . 2 ⊢ ((𝐹‘〈𝐴, 𝐵〉) = ∅ ↔ ((𝐹'''〈𝐴, 𝐵〉) = ∅ ∨ (𝐹'''〈𝐴, 𝐵〉) = V)) | |
4 | df-aov 41975 | . . . . 5 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
5 | 4 | eqeq1i 2804 | . . . 4 ⊢ ( ((𝐴𝐹𝐵)) = ∅ ↔ (𝐹'''〈𝐴, 𝐵〉) = ∅) |
6 | 5 | bicomi 216 | . . 3 ⊢ ((𝐹'''〈𝐴, 𝐵〉) = ∅ ↔ ((𝐴𝐹𝐵)) = ∅) |
7 | 4 | eqeq1i 2804 | . . . 4 ⊢ ( ((𝐴𝐹𝐵)) = V ↔ (𝐹'''〈𝐴, 𝐵〉) = V) |
8 | 7 | bicomi 216 | . . 3 ⊢ ((𝐹'''〈𝐴, 𝐵〉) = V ↔ ((𝐴𝐹𝐵)) = V) |
9 | 6, 8 | orbi12i 939 | . 2 ⊢ (((𝐹'''〈𝐴, 𝐵〉) = ∅ ∨ (𝐹'''〈𝐴, 𝐵〉) = V) ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) |
10 | 2, 3, 9 | 3bitri 289 | 1 ⊢ ((𝐴𝐹𝐵) = ∅ ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∨ wo 874 = wceq 1653 Vcvv 3385 ∅c0 4115 〈cop 4374 ‘cfv 6101 (class class class)co 6878 '''cafv 41971 ((caov 41972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-int 4668 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-res 5324 df-iota 6064 df-fun 6103 df-fv 6109 df-ov 6881 df-aiota 41934 df-dfat 41973 df-afv 41974 df-aov 41975 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |