![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aovov0bi | Structured version Visualization version GIF version |
Description: The operation's value on an ordered pair is the empty set if and only if the alternative value of the operation on this ordered pair is either the empty set or the universal class. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aovov0bi | ⊢ ((𝐴𝐹𝐵) = ∅ ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7365 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩) | |
2 | 1 | eqeq1i 2742 | . 2 ⊢ ((𝐴𝐹𝐵) = ∅ ↔ (𝐹‘⟨𝐴, 𝐵⟩) = ∅) |
3 | afvfv0bi 45458 | . 2 ⊢ ((𝐹‘⟨𝐴, 𝐵⟩) = ∅ ↔ ((𝐹'''⟨𝐴, 𝐵⟩) = ∅ ∨ (𝐹'''⟨𝐴, 𝐵⟩) = V)) | |
4 | df-aov 45427 | . . . . 5 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩) | |
5 | 4 | eqeq1i 2742 | . . . 4 ⊢ ( ((𝐴𝐹𝐵)) = ∅ ↔ (𝐹'''⟨𝐴, 𝐵⟩) = ∅) |
6 | 5 | bicomi 223 | . . 3 ⊢ ((𝐹'''⟨𝐴, 𝐵⟩) = ∅ ↔ ((𝐴𝐹𝐵)) = ∅) |
7 | 4 | eqeq1i 2742 | . . . 4 ⊢ ( ((𝐴𝐹𝐵)) = V ↔ (𝐹'''⟨𝐴, 𝐵⟩) = V) |
8 | 7 | bicomi 223 | . . 3 ⊢ ((𝐹'''⟨𝐴, 𝐵⟩) = V ↔ ((𝐴𝐹𝐵)) = V) |
9 | 6, 8 | orbi12i 914 | . 2 ⊢ (((𝐹'''⟨𝐴, 𝐵⟩) = ∅ ∨ (𝐹'''⟨𝐴, 𝐵⟩) = V) ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) |
10 | 2, 3, 9 | 3bitri 297 | 1 ⊢ ((𝐴𝐹𝐵) = ∅ ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 846 = wceq 1542 Vcvv 3448 ∅c0 4287 ⟨cop 4597 ‘cfv 6501 (class class class)co 7362 '''cafv 45423 ((caov 45424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-br 5111 df-opab 5173 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6453 df-fun 6503 df-fv 6509 df-ov 7365 df-aiota 45391 df-dfat 45425 df-afv 45426 df-aov 45427 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |