![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aovov0bi | Structured version Visualization version GIF version |
Description: The operation's value on an ordered pair is the empty set if and only if the alternative value of the operation on this ordered pair is either the empty set or the universal class. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aovov0bi | ⊢ ((𝐴𝐹𝐵) = ∅ ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7429 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩) | |
2 | 1 | eqeq1i 2733 | . 2 ⊢ ((𝐴𝐹𝐵) = ∅ ↔ (𝐹‘⟨𝐴, 𝐵⟩) = ∅) |
3 | afvfv0bi 46579 | . 2 ⊢ ((𝐹‘⟨𝐴, 𝐵⟩) = ∅ ↔ ((𝐹'''⟨𝐴, 𝐵⟩) = ∅ ∨ (𝐹'''⟨𝐴, 𝐵⟩) = V)) | |
4 | df-aov 46548 | . . . . 5 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩) | |
5 | 4 | eqeq1i 2733 | . . . 4 ⊢ ( ((𝐴𝐹𝐵)) = ∅ ↔ (𝐹'''⟨𝐴, 𝐵⟩) = ∅) |
6 | 5 | bicomi 223 | . . 3 ⊢ ((𝐹'''⟨𝐴, 𝐵⟩) = ∅ ↔ ((𝐴𝐹𝐵)) = ∅) |
7 | 4 | eqeq1i 2733 | . . . 4 ⊢ ( ((𝐴𝐹𝐵)) = V ↔ (𝐹'''⟨𝐴, 𝐵⟩) = V) |
8 | 7 | bicomi 223 | . . 3 ⊢ ((𝐹'''⟨𝐴, 𝐵⟩) = V ↔ ((𝐴𝐹𝐵)) = V) |
9 | 6, 8 | orbi12i 912 | . 2 ⊢ (((𝐹'''⟨𝐴, 𝐵⟩) = ∅ ∨ (𝐹'''⟨𝐴, 𝐵⟩) = V) ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) |
10 | 2, 3, 9 | 3bitri 296 | 1 ⊢ ((𝐴𝐹𝐵) = ∅ ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 845 = wceq 1533 Vcvv 3473 ∅c0 4326 ⟨cop 4638 ‘cfv 6553 (class class class)co 7426 '''cafv 46544 ((caov 46545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-res 5694 df-iota 6505 df-fun 6555 df-fv 6561 df-ov 7429 df-aiota 46512 df-dfat 46546 df-afv 46547 df-aov 46548 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |