Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aov0ov0 Structured version   Visualization version   GIF version

Theorem aov0ov0 42833
Description: If the alternative value of the operation on an ordered pair is the empty set, the operation's value at this ordered pair is the empty set. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
aov0ov0 ( ((𝐴𝐹𝐵)) = ∅ → (𝐴𝐹𝐵) = ∅)

Proof of Theorem aov0ov0
StepHypRef Expression
1 afv0fv0 42789 . 2 ((𝐹'''⟨𝐴, 𝐵⟩) = ∅ → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
2 df-aov 42761 . . 3 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
32eqeq1i 2785 . 2 ( ((𝐴𝐹𝐵)) = ∅ ↔ (𝐹'''⟨𝐴, 𝐵⟩) = ∅)
4 df-ov 6985 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
54eqeq1i 2785 . 2 ((𝐴𝐹𝐵) = ∅ ↔ (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
61, 3, 53imtr4i 284 1 ( ((𝐴𝐹𝐵)) = ∅ → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1508  c0 4181  cop 4450  cfv 6193  (class class class)co 6982  '''cafv 42757   ((caov 42758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4182  df-if 4354  df-sn 4445  df-pr 4447  df-op 4451  df-uni 4718  df-int 4755  df-br 4935  df-opab 4997  df-id 5316  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-res 5423  df-iota 6157  df-fun 6195  df-fv 6201  df-ov 6985  df-aiota 42726  df-dfat 42759  df-afv 42760  df-aov 42761
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator