Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aov0ov0 | Structured version Visualization version GIF version |
Description: If the alternative value of the operation on an ordered pair is the empty set, the operation's value at this ordered pair is the empty set. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aov0ov0 | ⊢ ( ((𝐴𝐹𝐵)) = ∅ → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | afv0fv0 44885 | . 2 ⊢ ((𝐹'''〈𝐴, 𝐵〉) = ∅ → (𝐹‘〈𝐴, 𝐵〉) = ∅) | |
2 | df-aov 44857 | . . 3 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
3 | 2 | eqeq1i 2741 | . 2 ⊢ ( ((𝐴𝐹𝐵)) = ∅ ↔ (𝐹'''〈𝐴, 𝐵〉) = ∅) |
4 | df-ov 7310 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
5 | 4 | eqeq1i 2741 | . 2 ⊢ ((𝐴𝐹𝐵) = ∅ ↔ (𝐹‘〈𝐴, 𝐵〉) = ∅) |
6 | 1, 3, 5 | 3imtr4i 292 | 1 ⊢ ( ((𝐴𝐹𝐵)) = ∅ → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∅c0 4262 〈cop 4571 ‘cfv 6458 (class class class)co 7307 '''cafv 44853 ((caov 44854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-res 5612 df-iota 6410 df-fun 6460 df-fv 6466 df-ov 7310 df-aiota 44821 df-dfat 44855 df-afv 44856 df-aov 44857 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |