| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aov0ov0 | Structured version Visualization version GIF version | ||
| Description: If the alternative value of the operation on an ordered pair is the empty set, the operation's value at this ordered pair is the empty set. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| aov0ov0 | ⊢ ( ((𝐴𝐹𝐵)) = ∅ → (𝐴𝐹𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | afv0fv0 47095 | . 2 ⊢ ((𝐹'''〈𝐴, 𝐵〉) = ∅ → (𝐹‘〈𝐴, 𝐵〉) = ∅) | |
| 2 | df-aov 47067 | . . 3 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
| 3 | 2 | eqeq1i 2739 | . 2 ⊢ ( ((𝐴𝐹𝐵)) = ∅ ↔ (𝐹'''〈𝐴, 𝐵〉) = ∅) |
| 4 | df-ov 7415 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 5 | 4 | eqeq1i 2739 | . 2 ⊢ ((𝐴𝐹𝐵) = ∅ ↔ (𝐹‘〈𝐴, 𝐵〉) = ∅) |
| 6 | 1, 3, 5 | 3imtr4i 292 | 1 ⊢ ( ((𝐴𝐹𝐵)) = ∅ → (𝐴𝐹𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∅c0 4313 〈cop 4612 ‘cfv 6540 (class class class)co 7412 '''cafv 47063 ((caov 47064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-res 5677 df-iota 6493 df-fun 6542 df-fv 6548 df-ov 7415 df-aiota 47031 df-dfat 47065 df-afv 47066 df-aov 47067 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |