Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aovvoveq | Structured version Visualization version GIF version |
Description: The alternative value of the operation on an ordered pair equals the operation's value on this ordered pair. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aovvoveq | ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝐶 → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-aov 44857 | . . 3 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
2 | 1 | eleq1i 2827 | . 2 ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐹'''〈𝐴, 𝐵〉) ∈ 𝐶) |
3 | afvvfveq 44884 | . . 3 ⊢ ((𝐹'''〈𝐴, 𝐵〉) ∈ 𝐶 → (𝐹'''〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) | |
4 | df-ov 7310 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
5 | 3, 1, 4 | 3eqtr4g 2801 | . 2 ⊢ ((𝐹'''〈𝐴, 𝐵〉) ∈ 𝐶 → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
6 | 2, 5 | sylbi 216 | 1 ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝐶 → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 〈cop 4571 ‘cfv 6458 (class class class)co 7307 '''cafv 44853 ((caov 44854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-res 5612 df-iota 6410 df-fun 6460 df-fv 6466 df-ov 7310 df-aiota 44821 df-dfat 44855 df-afv 44856 df-aov 44857 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |