Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aovvoveq | Structured version Visualization version GIF version |
Description: The alternative value of the operation on an ordered pair equals the operation's value on this ordered pair. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aovvoveq | ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝐶 → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-aov 44564 | . . 3 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
2 | 1 | eleq1i 2830 | . 2 ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐹'''〈𝐴, 𝐵〉) ∈ 𝐶) |
3 | afvvfveq 44591 | . . 3 ⊢ ((𝐹'''〈𝐴, 𝐵〉) ∈ 𝐶 → (𝐹'''〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) | |
4 | df-ov 7271 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
5 | 3, 1, 4 | 3eqtr4g 2804 | . 2 ⊢ ((𝐹'''〈𝐴, 𝐵〉) ∈ 𝐶 → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
6 | 2, 5 | sylbi 216 | 1 ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝐶 → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 〈cop 4572 ‘cfv 6430 (class class class)co 7268 '''cafv 44560 ((caov 44561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-int 4885 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-res 5600 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-aiota 44528 df-dfat 44562 df-afv 44563 df-aov 44564 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |