![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv0fv0 | Structured version Visualization version GIF version |
Description: If the value of the alternative function at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
afv0fv0 | ⊢ ((𝐹'''𝐴) = ∅ → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5314 | . . 3 ⊢ ∅ ∈ V | |
2 | eleq1a 2835 | . . 3 ⊢ (∅ ∈ V → ((𝐹'''𝐴) = ∅ → (𝐹'''𝐴) ∈ V)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐹'''𝐴) = ∅ → (𝐹'''𝐴) ∈ V) |
4 | afvvfveq 47109 | . . 3 ⊢ ((𝐹'''𝐴) ∈ V → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
5 | eqeq1 2740 | . . . 4 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹'''𝐴) = ∅ ↔ (𝐹‘𝐴) = ∅)) | |
6 | 5 | biimpd 229 | . . 3 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹'''𝐴) = ∅ → (𝐹‘𝐴) = ∅)) |
7 | 4, 6 | syl 17 | . 2 ⊢ ((𝐹'''𝐴) ∈ V → ((𝐹'''𝐴) = ∅ → (𝐹‘𝐴) = ∅)) |
8 | 3, 7 | mpcom 38 | 1 ⊢ ((𝐹'''𝐴) = ∅ → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 Vcvv 3479 ∅c0 4340 ‘cfv 6566 '''cafv 47078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-int 4953 df-br 5150 df-opab 5212 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-res 5702 df-iota 6519 df-fun 6568 df-fv 6574 df-aiota 47046 df-dfat 47080 df-afv 47081 |
This theorem is referenced by: afvfv0bi 47113 aov0ov0 47154 |
Copyright terms: Public domain | W3C validator |