Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv0fv0 Structured version   Visualization version   GIF version

Theorem afv0fv0 47095
Description: If the value of the alternative function at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afv0fv0 ((𝐹'''𝐴) = ∅ → (𝐹𝐴) = ∅)

Proof of Theorem afv0fv0
StepHypRef Expression
1 0ex 5287 . . 3 ∅ ∈ V
2 eleq1a 2828 . . 3 (∅ ∈ V → ((𝐹'''𝐴) = ∅ → (𝐹'''𝐴) ∈ V))
31, 2ax-mp 5 . 2 ((𝐹'''𝐴) = ∅ → (𝐹'''𝐴) ∈ V)
4 afvvfveq 47094 . . 3 ((𝐹'''𝐴) ∈ V → (𝐹'''𝐴) = (𝐹𝐴))
5 eqeq1 2738 . . . 4 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹'''𝐴) = ∅ ↔ (𝐹𝐴) = ∅))
65biimpd 229 . . 3 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹'''𝐴) = ∅ → (𝐹𝐴) = ∅))
74, 6syl 17 . 2 ((𝐹'''𝐴) ∈ V → ((𝐹'''𝐴) = ∅ → (𝐹𝐴) = ∅))
83, 7mpcom 38 1 ((𝐹'''𝐴) = ∅ → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3463  c0 4313  cfv 6540  '''cafv 47063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-res 5677  df-iota 6493  df-fun 6542  df-fv 6548  df-aiota 47031  df-dfat 47065  df-afv 47066
This theorem is referenced by:  afvfv0bi  47098  aov0ov0  47139
  Copyright terms: Public domain W3C validator