| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afv0fv0 | Structured version Visualization version GIF version | ||
| Description: If the value of the alternative function at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| Ref | Expression |
|---|---|
| afv0fv0 | ⊢ ((𝐹'''𝐴) = ∅ → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 2 | eleq1a 2823 | . . 3 ⊢ (∅ ∈ V → ((𝐹'''𝐴) = ∅ → (𝐹'''𝐴) ∈ V)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝐹'''𝐴) = ∅ → (𝐹'''𝐴) ∈ V) |
| 4 | afvvfveq 47149 | . . 3 ⊢ ((𝐹'''𝐴) ∈ V → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
| 5 | eqeq1 2733 | . . . 4 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹'''𝐴) = ∅ ↔ (𝐹‘𝐴) = ∅)) | |
| 6 | 5 | biimpd 229 | . . 3 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹'''𝐴) = ∅ → (𝐹‘𝐴) = ∅)) |
| 7 | 4, 6 | syl 17 | . 2 ⊢ ((𝐹'''𝐴) ∈ V → ((𝐹'''𝐴) = ∅ → (𝐹‘𝐴) = ∅)) |
| 8 | 3, 7 | mpcom 38 | 1 ⊢ ((𝐹'''𝐴) = ∅ → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ‘cfv 6511 '''cafv 47118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6464 df-fun 6513 df-fv 6519 df-aiota 47086 df-dfat 47120 df-afv 47121 |
| This theorem is referenced by: afvfv0bi 47153 aov0ov0 47194 |
| Copyright terms: Public domain | W3C validator |