Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv0fv0 Structured version   Visualization version   GIF version

Theorem afv0fv0 44528
Description: If the value of the alternative function at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afv0fv0 ((𝐹'''𝐴) = ∅ → (𝐹𝐴) = ∅)

Proof of Theorem afv0fv0
StepHypRef Expression
1 0ex 5226 . . 3 ∅ ∈ V
2 eleq1a 2834 . . 3 (∅ ∈ V → ((𝐹'''𝐴) = ∅ → (𝐹'''𝐴) ∈ V))
31, 2ax-mp 5 . 2 ((𝐹'''𝐴) = ∅ → (𝐹'''𝐴) ∈ V)
4 afvvfveq 44527 . . 3 ((𝐹'''𝐴) ∈ V → (𝐹'''𝐴) = (𝐹𝐴))
5 eqeq1 2742 . . . 4 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹'''𝐴) = ∅ ↔ (𝐹𝐴) = ∅))
65biimpd 228 . . 3 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹'''𝐴) = ∅ → (𝐹𝐴) = ∅))
74, 6syl 17 . 2 ((𝐹'''𝐴) ∈ V → ((𝐹'''𝐴) = ∅ → (𝐹𝐴) = ∅))
83, 7mpcom 38 1 ((𝐹'''𝐴) = ∅ → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  cfv 6418  '''cafv 44496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-aiota 44464  df-dfat 44498  df-afv 44499
This theorem is referenced by:  afvfv0bi  44531  aov0ov0  44572
  Copyright terms: Public domain W3C validator