Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv0fv0 Structured version   Visualization version   GIF version

Theorem afv0fv0 44066
Description: If the value of the alternative function at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afv0fv0 ((𝐹'''𝐴) = ∅ → (𝐹𝐴) = ∅)

Proof of Theorem afv0fv0
StepHypRef Expression
1 0ex 5178 . . 3 ∅ ∈ V
2 eleq1a 2848 . . 3 (∅ ∈ V → ((𝐹'''𝐴) = ∅ → (𝐹'''𝐴) ∈ V))
31, 2ax-mp 5 . 2 ((𝐹'''𝐴) = ∅ → (𝐹'''𝐴) ∈ V)
4 afvvfveq 44065 . . 3 ((𝐹'''𝐴) ∈ V → (𝐹'''𝐴) = (𝐹𝐴))
5 eqeq1 2763 . . . 4 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹'''𝐴) = ∅ ↔ (𝐹𝐴) = ∅))
65biimpd 232 . . 3 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹'''𝐴) = ∅ → (𝐹𝐴) = ∅))
74, 6syl 17 . 2 ((𝐹'''𝐴) ∈ V → ((𝐹'''𝐴) = ∅ → (𝐹𝐴) = ∅))
83, 7mpcom 38 1 ((𝐹'''𝐴) = ∅ → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2112  Vcvv 3410  c0 4226  cfv 6336  '''cafv 44034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-int 4840  df-br 5034  df-opab 5096  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-res 5537  df-iota 6295  df-fun 6338  df-fv 6344  df-aiota 44001  df-dfat 44036  df-afv 44037
This theorem is referenced by:  afvfv0bi  44069  aov0ov0  44110
  Copyright terms: Public domain W3C validator