Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovfundmoveq Structured version   Visualization version   GIF version

Theorem aovfundmoveq 42916
Description: If a class is a function restricted to an ordered pair of its domain, then the value of the operation on this pair is equal for both definitions. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
aovfundmoveq (𝐹 defAt ⟨𝐴, 𝐵⟩ → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵))

Proof of Theorem aovfundmoveq
StepHypRef Expression
1 afvfundmfveq 42873 . 2 (𝐹 defAt ⟨𝐴, 𝐵⟩ → (𝐹'''⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐴, 𝐵⟩))
2 df-aov 42856 . 2 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
3 df-ov 7019 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
41, 2, 33eqtr4g 2856 1 (𝐹 defAt ⟨𝐴, 𝐵⟩ → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1522  cop 4478  cfv 6225  (class class class)co 7016   defAt wdfat 42851  '''cafv 42852   ((caov 42853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-int 4783  df-br 4963  df-opab 5025  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-res 5455  df-iota 6189  df-fun 6227  df-fv 6233  df-ov 7019  df-aiota 42821  df-dfat 42854  df-afv 42855  df-aov 42856
This theorem is referenced by:  aovmpt4g  42936
  Copyright terms: Public domain W3C validator