| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aovfundmoveq | Structured version Visualization version GIF version | ||
| Description: If a class is a function restricted to an ordered pair of its domain, then the value of the operation on this pair is equal for both definitions. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| aovfundmoveq | ⊢ (𝐹 defAt 〈𝐴, 𝐵〉 → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | afvfundmfveq 47109 | . 2 ⊢ (𝐹 defAt 〈𝐴, 𝐵〉 → (𝐹'''〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) | |
| 2 | df-aov 47092 | . 2 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
| 3 | df-ov 7397 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 4 | 1, 2, 3 | 3eqtr4g 2790 | 1 ⊢ (𝐹 defAt 〈𝐴, 𝐵〉 → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈cop 4603 ‘cfv 6519 (class class class)co 7394 defAt wdfat 47087 '''cafv 47088 ((caov 47089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-res 5658 df-iota 6472 df-fun 6521 df-fv 6527 df-ov 7397 df-aiota 47056 df-dfat 47090 df-afv 47091 df-aov 47092 |
| This theorem is referenced by: aovmpt4g 47172 |
| Copyright terms: Public domain | W3C validator |