![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aovfundmoveq | Structured version Visualization version GIF version |
Description: If a class is a function restricted to an ordered pair of its domain, then the value of the operation on this pair is equal for both definitions. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aovfundmoveq | ⊢ (𝐹 defAt ⟨𝐴, 𝐵⟩ → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | afvfundmfveq 46431 | . 2 ⊢ (𝐹 defAt ⟨𝐴, 𝐵⟩ → (𝐹'''⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐴, 𝐵⟩)) | |
2 | df-aov 46414 | . 2 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩) | |
3 | df-ov 7417 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩) | |
4 | 1, 2, 3 | 3eqtr4g 2792 | 1 ⊢ (𝐹 defAt ⟨𝐴, 𝐵⟩ → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ⟨cop 4630 ‘cfv 6542 (class class class)co 7414 defAt wdfat 46409 '''cafv 46410 ((caov 46411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-res 5684 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 df-aiota 46378 df-dfat 46412 df-afv 46413 df-aov 46414 |
This theorem is referenced by: aovmpt4g 46494 |
Copyright terms: Public domain | W3C validator |