Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovfundmoveq Structured version   Visualization version   GIF version

Theorem aovfundmoveq 46620
Description: If a class is a function restricted to an ordered pair of its domain, then the value of the operation on this pair is equal for both definitions. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
aovfundmoveq (𝐹 defAt ⟨𝐴, 𝐵⟩ → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵))

Proof of Theorem aovfundmoveq
StepHypRef Expression
1 afvfundmfveq 46577 . 2 (𝐹 defAt ⟨𝐴, 𝐵⟩ → (𝐹'''⟨𝐴, 𝐵⟩) = (𝐹‘⟨𝐴, 𝐵⟩))
2 df-aov 46560 . 2 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
3 df-ov 7416 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
41, 2, 33eqtr4g 2790 1 (𝐹 defAt ⟨𝐴, 𝐵⟩ → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  cop 4631  cfv 6543  (class class class)co 7413   defAt wdfat 46555  '''cafv 46556   ((caov 46557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-br 5145  df-opab 5207  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-res 5685  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7416  df-aiota 46524  df-dfat 46558  df-afv 46559  df-aov 46560
This theorem is referenced by:  aovmpt4g  46640
  Copyright terms: Public domain W3C validator