Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovnfundmuv Structured version   Visualization version   GIF version

Theorem aovnfundmuv 47153
Description: If an ordered pair is not in the domain of a class or the class is not a function restricted to the ordered pair, then the operation value for this pair is the universal class. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
aovnfundmuv 𝐹 defAt ⟨𝐴, 𝐵⟩ → ((𝐴𝐹𝐵)) = V)

Proof of Theorem aovnfundmuv
StepHypRef Expression
1 df-aov 47092 . 2 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
2 afvnfundmuv 47110 . 2 𝐹 defAt ⟨𝐴, 𝐵⟩ → (𝐹'''⟨𝐴, 𝐵⟩) = V)
31, 2eqtrid 2777 1 𝐹 defAt ⟨𝐴, 𝐵⟩ → ((𝐴𝐹𝐵)) = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  Vcvv 3455  cop 4603   defAt wdfat 47087  '''cafv 47088   ((caov 47089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-br 5116  df-opab 5178  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-res 5658  df-iota 6472  df-fun 6521  df-fv 6527  df-aiota 47056  df-dfat 47090  df-afv 47091  df-aov 47092
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator