| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aovnfundmuv | Structured version Visualization version GIF version | ||
| Description: If an ordered pair is not in the domain of a class or the class is not a function restricted to the ordered pair, then the operation value for this pair is the universal class. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| aovnfundmuv | ⊢ (¬ 𝐹 defAt 〈𝐴, 𝐵〉 → ((𝐴𝐹𝐵)) = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-aov 47235 | . 2 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
| 2 | afvnfundmuv 47253 | . 2 ⊢ (¬ 𝐹 defAt 〈𝐴, 𝐵〉 → (𝐹'''〈𝐴, 𝐵〉) = V) | |
| 3 | 1, 2 | eqtrid 2780 | 1 ⊢ (¬ 𝐹 defAt 〈𝐴, 𝐵〉 → ((𝐴𝐹𝐵)) = V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 Vcvv 3438 〈cop 4583 defAt wdfat 47230 '''cafv 47231 ((caov 47232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-res 5633 df-iota 6445 df-fun 6491 df-fv 6497 df-aiota 47199 df-dfat 47233 df-afv 47234 df-aov 47235 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |