Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > afvfundmfveq | Structured version Visualization version GIF version |
Description: If a class is a function restricted to a member of its domain, then the function value for this member is equal for both definitions. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
afvfundmfveq | ⊢ (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfafv2 44105 | . 2 ⊢ (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) | |
2 | iftrue 4429 | . 2 ⊢ (𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = (𝐹‘𝐴)) | |
3 | 1, 2 | syl5eq 2805 | 1 ⊢ (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 Vcvv 3409 ifcif 4423 ‘cfv 6340 defAt wdfat 44089 '''cafv 44090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-int 4842 df-br 5037 df-opab 5099 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-res 5540 df-iota 6299 df-fun 6342 df-fv 6348 df-aiota 44057 df-dfat 44092 df-afv 44093 |
This theorem is referenced by: afvnufveq 44120 afvfvn0fveq 44123 afv0nbfvbi 44124 afveu 44126 fnbrafvb 44127 afvelrn 44141 afvres 44145 tz6.12-afv 44146 dmfcoafv 44148 afvco2 44149 rlimdmafv 44150 aovfundmoveq 44154 |
Copyright terms: Public domain | W3C validator |