Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvfundmfveq Structured version   Visualization version   GIF version

Theorem afvfundmfveq 47132
Description: If a class is a function restricted to a member of its domain, then the function value for this member is equal for both definitions. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvfundmfveq (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))

Proof of Theorem afvfundmfveq
StepHypRef Expression
1 dfafv2 47126 . 2 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)
2 iftrue 4490 . 2 (𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (𝐹𝐴), V) = (𝐹𝐴))
31, 2eqtrid 2776 1 (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3444  ifcif 4484  cfv 6499   defAt wdfat 47110  '''cafv 47111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-res 5643  df-iota 6452  df-fun 6501  df-fv 6507  df-aiota 47079  df-dfat 47113  df-afv 47114
This theorem is referenced by:  afvnufveq  47141  afvfvn0fveq  47144  afv0nbfvbi  47145  afveu  47147  fnbrafvb  47148  afvelrn  47162  afvres  47166  tz6.12-afv  47167  dmfcoafv  47169  afvco2  47170  rlimdmafv  47171  aovfundmoveq  47175
  Copyright terms: Public domain W3C validator