Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvfundmfveq Structured version   Visualization version   GIF version

Theorem afvfundmfveq 44111
 Description: If a class is a function restricted to a member of its domain, then the function value for this member is equal for both definitions. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvfundmfveq (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))

Proof of Theorem afvfundmfveq
StepHypRef Expression
1 dfafv2 44105 . 2 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)
2 iftrue 4429 . 2 (𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (𝐹𝐴), V) = (𝐹𝐴))
31, 2syl5eq 2805 1 (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538  Vcvv 3409  ifcif 4423  ‘cfv 6340   defAt wdfat 44089  '''cafv 44090 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-int 4842  df-br 5037  df-opab 5099  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-res 5540  df-iota 6299  df-fun 6342  df-fv 6348  df-aiota 44057  df-dfat 44092  df-afv 44093 This theorem is referenced by:  afvnufveq  44120  afvfvn0fveq  44123  afv0nbfvbi  44124  afveu  44126  fnbrafvb  44127  afvelrn  44141  afvres  44145  tz6.12-afv  44146  dmfcoafv  44148  afvco2  44149  rlimdmafv  44150  aovfundmoveq  44154
 Copyright terms: Public domain W3C validator