| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afvfundmfveq | Structured version Visualization version GIF version | ||
| Description: If a class is a function restricted to a member of its domain, then the function value for this member is equal for both definitions. (Contributed by Alexander van der Vekens, 25-May-2017.) |
| Ref | Expression |
|---|---|
| afvfundmfveq | ⊢ (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfafv2 47161 | . 2 ⊢ (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) | |
| 2 | iftrue 4506 | . 2 ⊢ (𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = (𝐹‘𝐴)) | |
| 3 | 1, 2 | eqtrid 2782 | 1 ⊢ (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3459 ifcif 4500 ‘cfv 6531 defAt wdfat 47145 '''cafv 47146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-res 5666 df-iota 6484 df-fun 6533 df-fv 6539 df-aiota 47114 df-dfat 47148 df-afv 47149 |
| This theorem is referenced by: afvnufveq 47176 afvfvn0fveq 47179 afv0nbfvbi 47180 afveu 47182 fnbrafvb 47183 afvelrn 47197 afvres 47201 tz6.12-afv 47202 dmfcoafv 47204 afvco2 47205 rlimdmafv 47206 aovfundmoveq 47210 |
| Copyright terms: Public domain | W3C validator |