Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvfundmfveq Structured version   Visualization version   GIF version

Theorem afvfundmfveq 47053
Description: If a class is a function restricted to a member of its domain, then the function value for this member is equal for both definitions. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvfundmfveq (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))

Proof of Theorem afvfundmfveq
StepHypRef Expression
1 dfafv2 47047 . 2 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)
2 iftrue 4554 . 2 (𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (𝐹𝐴), V) = (𝐹𝐴))
31, 2eqtrid 2792 1 (𝐹 defAt 𝐴 → (𝐹'''𝐴) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  Vcvv 3488  ifcif 4548  cfv 6573   defAt wdfat 47031  '''cafv 47032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-aiota 47000  df-dfat 47034  df-afv 47035
This theorem is referenced by:  afvnufveq  47062  afvfvn0fveq  47065  afv0nbfvbi  47066  afveu  47068  fnbrafvb  47069  afvelrn  47083  afvres  47087  tz6.12-afv  47088  dmfcoafv  47090  afvco2  47091  rlimdmafv  47092  aovfundmoveq  47096
  Copyright terms: Public domain W3C validator