![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afvnfundmuv | Structured version Visualization version GIF version |
Description: If a set is not in the domain of a class or the class is not a function restricted to the set, then the function value for this set is the universe. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
afvnfundmuv | ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹'''𝐴) = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfafv2 46325 | . 2 ⊢ (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) | |
2 | iffalse 4529 | . 2 ⊢ (¬ 𝐹 defAt 𝐴 → if(𝐹 defAt 𝐴, (𝐹‘𝐴), V) = V) | |
3 | 1, 2 | eqtrid 2776 | 1 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹'''𝐴) = V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 Vcvv 3466 ifcif 4520 ‘cfv 6533 defAt wdfat 46309 '''cafv 46310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-res 5678 df-iota 6485 df-fun 6535 df-fv 6541 df-aiota 46278 df-dfat 46312 df-afv 46313 |
This theorem is referenced by: ndmafv 46333 nfunsnafv 46335 afvnufveq 46340 afvres 46365 afvco2 46369 aovnfundmuv 46375 |
Copyright terms: Public domain | W3C validator |