Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aovnuoveq | Structured version Visualization version GIF version |
Description: The alternative value of the operation on an ordered pair equals the operation's value at this ordered pair. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aovnuoveq | ⊢ ( ((𝐴𝐹𝐵)) ≠ V → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-aov 44094 | . . 3 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
2 | 1 | neeq1i 3015 | . 2 ⊢ ( ((𝐴𝐹𝐵)) ≠ V ↔ (𝐹'''〈𝐴, 𝐵〉) ≠ V) |
3 | afvnufveq 44120 | . . 3 ⊢ ((𝐹'''〈𝐴, 𝐵〉) ≠ V → (𝐹'''〈𝐴, 𝐵〉) = (𝐹‘〈𝐴, 𝐵〉)) | |
4 | df-ov 7159 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
5 | 3, 1, 4 | 3eqtr4g 2818 | . 2 ⊢ ((𝐹'''〈𝐴, 𝐵〉) ≠ V → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
6 | 2, 5 | sylbi 220 | 1 ⊢ ( ((𝐴𝐹𝐵)) ≠ V → ((𝐴𝐹𝐵)) = (𝐴𝐹𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ≠ wne 2951 Vcvv 3409 〈cop 4531 ‘cfv 6340 (class class class)co 7156 '''cafv 44090 ((caov 44091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-int 4842 df-br 5037 df-opab 5099 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-res 5540 df-iota 6299 df-fun 6342 df-fv 6348 df-ov 7159 df-aiota 44057 df-dfat 44092 df-afv 44093 df-aov 44094 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |