![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aovpcov0 | Structured version Visualization version GIF version |
Description: If the alternative value of the operation on an ordered pair is the universal class, the operation's value at this ordered pair is the empty set. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
aovpcov0 | ⊢ ( ((𝐴𝐹𝐵)) = V → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | afvpcfv0 47124 | . 2 ⊢ ((𝐹'''〈𝐴, 𝐵〉) = V → (𝐹‘〈𝐴, 𝐵〉) = ∅) | |
2 | df-aov 47099 | . . 3 ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) | |
3 | 2 | eqeq1i 2742 | . 2 ⊢ ( ((𝐴𝐹𝐵)) = V ↔ (𝐹'''〈𝐴, 𝐵〉) = V) |
4 | df-ov 7441 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
5 | 4 | eqeq1i 2742 | . 2 ⊢ ((𝐴𝐹𝐵) = ∅ ↔ (𝐹‘〈𝐴, 𝐵〉) = ∅) |
6 | 1, 3, 5 | 3imtr4i 292 | 1 ⊢ ( ((𝐴𝐹𝐵)) = V → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Vcvv 3481 ∅c0 4342 〈cop 4640 ‘cfv 6569 (class class class)co 7438 '''cafv 47095 ((caov 47096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-res 5705 df-iota 6522 df-fun 6571 df-fv 6577 df-ov 7441 df-aiota 47063 df-dfat 47097 df-afv 47098 df-aov 47099 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |