Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovpcov0 Structured version   Visualization version   GIF version

Theorem aovpcov0 47168
Description: If the alternative value of the operation on an ordered pair is the universal class, the operation's value at this ordered pair is the empty set. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
aovpcov0 ( ((𝐴𝐹𝐵)) = V → (𝐴𝐹𝐵) = ∅)

Proof of Theorem aovpcov0
StepHypRef Expression
1 afvpcfv0 47124 . 2 ((𝐹'''⟨𝐴, 𝐵⟩) = V → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
2 df-aov 47099 . . 3 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
32eqeq1i 2742 . 2 ( ((𝐴𝐹𝐵)) = V ↔ (𝐹'''⟨𝐴, 𝐵⟩) = V)
4 df-ov 7441 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
54eqeq1i 2742 . 2 ((𝐴𝐹𝐵) = ∅ ↔ (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
61, 3, 53imtr4i 292 1 ( ((𝐴𝐹𝐵)) = V → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  Vcvv 3481  c0 4342  cop 4640  cfv 6569  (class class class)co 7438  '''cafv 47095   ((caov 47096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-res 5705  df-iota 6522  df-fun 6571  df-fv 6577  df-ov 7441  df-aiota 47063  df-dfat 47097  df-afv 47098  df-aov 47099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator