Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovpcov0 Structured version   Visualization version   GIF version

Theorem aovpcov0 47174
Description: If the alternative value of the operation on an ordered pair is the universal class, the operation's value at this ordered pair is the empty set. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
aovpcov0 ( ((𝐴𝐹𝐵)) = V → (𝐴𝐹𝐵) = ∅)

Proof of Theorem aovpcov0
StepHypRef Expression
1 afvpcfv0 47130 . 2 ((𝐹'''⟨𝐴, 𝐵⟩) = V → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
2 df-aov 47105 . . 3 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
32eqeq1i 2734 . 2 ( ((𝐴𝐹𝐵)) = V ↔ (𝐹'''⟨𝐴, 𝐵⟩) = V)
4 df-ov 7352 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
54eqeq1i 2734 . 2 ((𝐴𝐹𝐵) = ∅ ↔ (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
61, 3, 53imtr4i 292 1 ( ((𝐴𝐹𝐵)) = V → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3436  c0 4284  cop 4583  cfv 6482  (class class class)co 7349  '''cafv 47101   ((caov 47102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-aiota 47069  df-dfat 47103  df-afv 47104  df-aov 47105
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator