Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovpcov0 Structured version   Visualization version   GIF version

Theorem aovpcov0 47195
Description: If the alternative value of the operation on an ordered pair is the universal class, the operation's value at this ordered pair is the empty set. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
aovpcov0 ( ((𝐴𝐹𝐵)) = V → (𝐴𝐹𝐵) = ∅)

Proof of Theorem aovpcov0
StepHypRef Expression
1 afvpcfv0 47151 . 2 ((𝐹'''⟨𝐴, 𝐵⟩) = V → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
2 df-aov 47126 . . 3 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
32eqeq1i 2735 . 2 ( ((𝐴𝐹𝐵)) = V ↔ (𝐹'''⟨𝐴, 𝐵⟩) = V)
4 df-ov 7393 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
54eqeq1i 2735 . 2 ((𝐴𝐹𝐵) = ∅ ↔ (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
61, 3, 53imtr4i 292 1 ( ((𝐴𝐹𝐵)) = V → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3450  c0 4299  cop 4598  cfv 6514  (class class class)co 7390  '''cafv 47122   ((caov 47123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-aiota 47090  df-dfat 47124  df-afv 47125  df-aov 47126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator