Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovpcov0 Structured version   Visualization version   GIF version

Theorem aovpcov0 42741
Description: If the alternative value of the operation on an ordered pair is the universal class, the operation's value at this ordered pair is the empty set. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
aovpcov0 ( ((𝐴𝐹𝐵)) = V → (𝐴𝐹𝐵) = ∅)

Proof of Theorem aovpcov0
StepHypRef Expression
1 afvpcfv0 42697 . 2 ((𝐹'''⟨𝐴, 𝐵⟩) = V → (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
2 df-aov 42672 . . 3 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
32eqeq1i 2777 . 2 ( ((𝐴𝐹𝐵)) = V ↔ (𝐹'''⟨𝐴, 𝐵⟩) = V)
4 df-ov 6973 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
54eqeq1i 2777 . 2 ((𝐴𝐹𝐵) = ∅ ↔ (𝐹‘⟨𝐴, 𝐵⟩) = ∅)
61, 3, 53imtr4i 284 1 ( ((𝐴𝐹𝐵)) = V → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  Vcvv 3409  c0 4173  cop 4441  cfv 6182  (class class class)co 6970  '''cafv 42668   ((caov 42669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-int 4744  df-br 4924  df-opab 4986  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-res 5412  df-iota 6146  df-fun 6184  df-fv 6190  df-ov 6973  df-aiota 42637  df-dfat 42670  df-afv 42671  df-aov 42672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator