![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspceaov | Structured version Visualization version GIF version |
Description: A frequently used special case of rspc2ev 3540 for operation values, analogous to rspceov 6950. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
rspceaov | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = ((𝐶𝐹𝐷)) ) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = ((𝑥𝐹𝑦)) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2825 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝐹 = 𝐹) | |
2 | id 22 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝑥 = 𝐶) | |
3 | eqidd 2825 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝑦 = 𝑦) | |
4 | 1, 2, 3 | aoveq123d 42079 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝑥𝐹𝑦)) = ((𝐶𝐹𝑦)) ) |
5 | 4 | eqeq2d 2834 | . 2 ⊢ (𝑥 = 𝐶 → (𝑆 = ((𝑥𝐹𝑦)) ↔ 𝑆 = ((𝐶𝐹𝑦)) )) |
6 | eqidd 2825 | . . . 4 ⊢ (𝑦 = 𝐷 → 𝐹 = 𝐹) | |
7 | eqidd 2825 | . . . 4 ⊢ (𝑦 = 𝐷 → 𝐶 = 𝐶) | |
8 | id 22 | . . . 4 ⊢ (𝑦 = 𝐷 → 𝑦 = 𝐷) | |
9 | 6, 7, 8 | aoveq123d 42079 | . . 3 ⊢ (𝑦 = 𝐷 → ((𝐶𝐹𝑦)) = ((𝐶𝐹𝐷)) ) |
10 | 9 | eqeq2d 2834 | . 2 ⊢ (𝑦 = 𝐷 → (𝑆 = ((𝐶𝐹𝑦)) ↔ 𝑆 = ((𝐶𝐹𝐷)) )) |
11 | 5, 10 | rspc2ev 3540 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = ((𝐶𝐹𝐷)) ) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = ((𝑥𝐹𝑦)) ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ∃wrex 3117 ((caov 42019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-int 4697 df-br 4873 df-opab 4935 df-id 5249 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-res 5353 df-iota 6085 df-fun 6124 df-fv 6130 df-aiota 41981 df-dfat 42020 df-afv 42021 df-aov 42022 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |