Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rspceaov Structured version   Visualization version   GIF version

Theorem rspceaov 43403
 Description: A frequently used special case of rspc2ev 3638 for operation values, analogous to rspceov 7206. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
rspceaov ((𝐶𝐴𝐷𝐵𝑆 = ((𝐶𝐹𝐷)) ) → ∃𝑥𝐴𝑦𝐵 𝑆 = ((𝑥𝐹𝑦)) )
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑦,𝐷   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐷(𝑥)

Proof of Theorem rspceaov
StepHypRef Expression
1 eqidd 2825 . . . 4 (𝑥 = 𝐶𝐹 = 𝐹)
2 id 22 . . . 4 (𝑥 = 𝐶𝑥 = 𝐶)
3 eqidd 2825 . . . 4 (𝑥 = 𝐶𝑦 = 𝑦)
41, 2, 3aoveq123d 43384 . . 3 (𝑥 = 𝐶 → ((𝑥𝐹𝑦)) = ((𝐶𝐹𝑦)) )
54eqeq2d 2835 . 2 (𝑥 = 𝐶 → (𝑆 = ((𝑥𝐹𝑦)) ↔ 𝑆 = ((𝐶𝐹𝑦)) ))
6 eqidd 2825 . . . 4 (𝑦 = 𝐷𝐹 = 𝐹)
7 eqidd 2825 . . . 4 (𝑦 = 𝐷𝐶 = 𝐶)
8 id 22 . . . 4 (𝑦 = 𝐷𝑦 = 𝐷)
96, 7, 8aoveq123d 43384 . . 3 (𝑦 = 𝐷 → ((𝐶𝐹𝑦)) = ((𝐶𝐹𝐷)) )
109eqeq2d 2835 . 2 (𝑦 = 𝐷 → (𝑆 = ((𝐶𝐹𝑦)) ↔ 𝑆 = ((𝐶𝐹𝐷)) ))
115, 10rspc2ev 3638 1 ((𝐶𝐴𝐷𝐵𝑆 = ((𝐶𝐹𝐷)) ) → ∃𝑥𝐴𝑦𝐵 𝑆 = ((𝑥𝐹𝑦)) )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1083   = wceq 1536   ∈ wcel 2113  ∃wrex 3142   ((caov 43324 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-int 4880  df-br 5070  df-opab 5132  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-res 5570  df-iota 6317  df-fun 6360  df-fv 6366  df-aiota 43292  df-dfat 43325  df-afv 43326  df-aov 43327 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator