| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rspceaov | Structured version Visualization version GIF version | ||
| Description: A frequently used special case of rspc2ev 3619 for operation values, analogous to rspceov 7459. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| Ref | Expression |
|---|---|
| rspceaov | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = ((𝐶𝐹𝐷)) ) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = ((𝑥𝐹𝑦)) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2737 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝐹 = 𝐹) | |
| 2 | id 22 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝑥 = 𝐶) | |
| 3 | eqidd 2737 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝑦 = 𝑦) | |
| 4 | 1, 2, 3 | aoveq123d 47187 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝑥𝐹𝑦)) = ((𝐶𝐹𝑦)) ) |
| 5 | 4 | eqeq2d 2747 | . 2 ⊢ (𝑥 = 𝐶 → (𝑆 = ((𝑥𝐹𝑦)) ↔ 𝑆 = ((𝐶𝐹𝑦)) )) |
| 6 | eqidd 2737 | . . . 4 ⊢ (𝑦 = 𝐷 → 𝐹 = 𝐹) | |
| 7 | eqidd 2737 | . . . 4 ⊢ (𝑦 = 𝐷 → 𝐶 = 𝐶) | |
| 8 | id 22 | . . . 4 ⊢ (𝑦 = 𝐷 → 𝑦 = 𝐷) | |
| 9 | 6, 7, 8 | aoveq123d 47187 | . . 3 ⊢ (𝑦 = 𝐷 → ((𝐶𝐹𝑦)) = ((𝐶𝐹𝐷)) ) |
| 10 | 9 | eqeq2d 2747 | . 2 ⊢ (𝑦 = 𝐷 → (𝑆 = ((𝐶𝐹𝑦)) ↔ 𝑆 = ((𝐶𝐹𝐷)) )) |
| 11 | 5, 10 | rspc2ev 3619 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = ((𝐶𝐹𝐷)) ) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = ((𝑥𝐹𝑦)) ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ((caov 47127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-res 5671 df-iota 6489 df-fun 6538 df-fv 6544 df-aiota 47094 df-dfat 47128 df-afv 47129 df-aov 47130 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |