|   | Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rspceaov | Structured version Visualization version GIF version | ||
| Description: A frequently used special case of rspc2ev 3634 for operation values, analogous to rspceov 7481. (Contributed by Alexander van der Vekens, 26-May-2017.) | 
| Ref | Expression | 
|---|---|
| rspceaov | ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = ((𝐶𝐹𝐷)) ) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = ((𝑥𝐹𝑦)) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqidd 2737 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝐹 = 𝐹) | |
| 2 | id 22 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝑥 = 𝐶) | |
| 3 | eqidd 2737 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝑦 = 𝑦) | |
| 4 | 1, 2, 3 | aoveq123d 47195 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝑥𝐹𝑦)) = ((𝐶𝐹𝑦)) ) | 
| 5 | 4 | eqeq2d 2747 | . 2 ⊢ (𝑥 = 𝐶 → (𝑆 = ((𝑥𝐹𝑦)) ↔ 𝑆 = ((𝐶𝐹𝑦)) )) | 
| 6 | eqidd 2737 | . . . 4 ⊢ (𝑦 = 𝐷 → 𝐹 = 𝐹) | |
| 7 | eqidd 2737 | . . . 4 ⊢ (𝑦 = 𝐷 → 𝐶 = 𝐶) | |
| 8 | id 22 | . . . 4 ⊢ (𝑦 = 𝐷 → 𝑦 = 𝐷) | |
| 9 | 6, 7, 8 | aoveq123d 47195 | . . 3 ⊢ (𝑦 = 𝐷 → ((𝐶𝐹𝑦)) = ((𝐶𝐹𝐷)) ) | 
| 10 | 9 | eqeq2d 2747 | . 2 ⊢ (𝑦 = 𝐷 → (𝑆 = ((𝐶𝐹𝑦)) ↔ 𝑆 = ((𝐶𝐹𝐷)) )) | 
| 11 | 5, 10 | rspc2ev 3634 | 1 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = ((𝐶𝐹𝐷)) ) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = ((𝑥𝐹𝑦)) ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 ((caov 47135 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-res 5696 df-iota 6513 df-fun 6562 df-fv 6568 df-aiota 47102 df-dfat 47136 df-afv 47137 df-aov 47138 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |