Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > afvfv0bi | Structured version Visualization version GIF version |
Description: The function's value at an argument is the empty set if and only if the value of the alternative function at this argument is either the empty set or the universe. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
afvfv0bi | ⊢ ((𝐹‘𝐴) = ∅ ↔ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 984 | . . . 4 ⊢ (¬ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V) ↔ (¬ (𝐹'''𝐴) = ∅ ∧ ¬ (𝐹'''𝐴) = V)) | |
2 | df-ne 2941 | . . . . . . 7 ⊢ ((𝐹'''𝐴) ≠ V ↔ ¬ (𝐹'''𝐴) = V) | |
3 | afvnufveq 44311 | . . . . . . 7 ⊢ ((𝐹'''𝐴) ≠ V → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
4 | 2, 3 | sylbir 238 | . . . . . 6 ⊢ (¬ (𝐹'''𝐴) = V → (𝐹'''𝐴) = (𝐹‘𝐴)) |
5 | eqeq1 2741 | . . . . . . . 8 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹'''𝐴) = ∅ ↔ (𝐹‘𝐴) = ∅)) | |
6 | 5 | notbid 321 | . . . . . . 7 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → (¬ (𝐹'''𝐴) = ∅ ↔ ¬ (𝐹‘𝐴) = ∅)) |
7 | 6 | biimpd 232 | . . . . . 6 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → (¬ (𝐹'''𝐴) = ∅ → ¬ (𝐹‘𝐴) = ∅)) |
8 | 4, 7 | syl 17 | . . . . 5 ⊢ (¬ (𝐹'''𝐴) = V → (¬ (𝐹'''𝐴) = ∅ → ¬ (𝐹‘𝐴) = ∅)) |
9 | 8 | impcom 411 | . . . 4 ⊢ ((¬ (𝐹'''𝐴) = ∅ ∧ ¬ (𝐹'''𝐴) = V) → ¬ (𝐹‘𝐴) = ∅) |
10 | 1, 9 | sylbi 220 | . . 3 ⊢ (¬ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V) → ¬ (𝐹‘𝐴) = ∅) |
11 | 10 | con4i 114 | . 2 ⊢ ((𝐹‘𝐴) = ∅ → ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V)) |
12 | afv0fv0 44313 | . . 3 ⊢ ((𝐹'''𝐴) = ∅ → (𝐹‘𝐴) = ∅) | |
13 | afvpcfv0 44310 | . . 3 ⊢ ((𝐹'''𝐴) = V → (𝐹‘𝐴) = ∅) | |
14 | 12, 13 | jaoi 857 | . 2 ⊢ (((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V) → (𝐹‘𝐴) = ∅) |
15 | 11, 14 | impbii 212 | 1 ⊢ ((𝐹‘𝐴) = ∅ ↔ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 847 = wceq 1543 ≠ wne 2940 Vcvv 3408 ∅c0 4237 ‘cfv 6380 '''cafv 44281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-int 4860 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-res 5563 df-iota 6338 df-fun 6382 df-fv 6388 df-aiota 44249 df-dfat 44283 df-afv 44284 |
This theorem is referenced by: aovov0bi 44360 |
Copyright terms: Public domain | W3C validator |