Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvfv0bi Structured version   Visualization version   GIF version

Theorem afvfv0bi 47189
Description: The function's value at an argument is the empty set if and only if the value of the alternative function at this argument is either the empty set or the universe. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvfv0bi ((𝐹𝐴) = ∅ ↔ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V))

Proof of Theorem afvfv0bi
StepHypRef Expression
1 ioran 985 . . . 4 (¬ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V) ↔ (¬ (𝐹'''𝐴) = ∅ ∧ ¬ (𝐹'''𝐴) = V))
2 df-ne 2929 . . . . . . 7 ((𝐹'''𝐴) ≠ V ↔ ¬ (𝐹'''𝐴) = V)
3 afvnufveq 47184 . . . . . . 7 ((𝐹'''𝐴) ≠ V → (𝐹'''𝐴) = (𝐹𝐴))
42, 3sylbir 235 . . . . . 6 (¬ (𝐹'''𝐴) = V → (𝐹'''𝐴) = (𝐹𝐴))
5 eqeq1 2735 . . . . . . . 8 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹'''𝐴) = ∅ ↔ (𝐹𝐴) = ∅))
65notbid 318 . . . . . . 7 ((𝐹'''𝐴) = (𝐹𝐴) → (¬ (𝐹'''𝐴) = ∅ ↔ ¬ (𝐹𝐴) = ∅))
76biimpd 229 . . . . . 6 ((𝐹'''𝐴) = (𝐹𝐴) → (¬ (𝐹'''𝐴) = ∅ → ¬ (𝐹𝐴) = ∅))
84, 7syl 17 . . . . 5 (¬ (𝐹'''𝐴) = V → (¬ (𝐹'''𝐴) = ∅ → ¬ (𝐹𝐴) = ∅))
98impcom 407 . . . 4 ((¬ (𝐹'''𝐴) = ∅ ∧ ¬ (𝐹'''𝐴) = V) → ¬ (𝐹𝐴) = ∅)
101, 9sylbi 217 . . 3 (¬ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V) → ¬ (𝐹𝐴) = ∅)
1110con4i 114 . 2 ((𝐹𝐴) = ∅ → ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V))
12 afv0fv0 47186 . . 3 ((𝐹'''𝐴) = ∅ → (𝐹𝐴) = ∅)
13 afvpcfv0 47183 . . 3 ((𝐹'''𝐴) = V → (𝐹𝐴) = ∅)
1412, 13jaoi 857 . 2 (((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V) → (𝐹𝐴) = ∅)
1511, 14impbii 209 1 ((𝐹𝐴) = ∅ ↔ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wne 2928  Vcvv 3436  c0 4283  cfv 6481  '''cafv 47154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-res 5628  df-iota 6437  df-fun 6483  df-fv 6489  df-aiota 47122  df-dfat 47156  df-afv 47157
This theorem is referenced by:  aovov0bi  47233
  Copyright terms: Public domain W3C validator