Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvfv0bi Structured version   Visualization version   GIF version

Theorem afvfv0bi 44644
Description: The function's value at an argument is the empty set if and only if the value of the alternative function at this argument is either the empty set or the universe. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvfv0bi ((𝐹𝐴) = ∅ ↔ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V))

Proof of Theorem afvfv0bi
StepHypRef Expression
1 ioran 981 . . . 4 (¬ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V) ↔ (¬ (𝐹'''𝐴) = ∅ ∧ ¬ (𝐹'''𝐴) = V))
2 df-ne 2944 . . . . . . 7 ((𝐹'''𝐴) ≠ V ↔ ¬ (𝐹'''𝐴) = V)
3 afvnufveq 44639 . . . . . . 7 ((𝐹'''𝐴) ≠ V → (𝐹'''𝐴) = (𝐹𝐴))
42, 3sylbir 234 . . . . . 6 (¬ (𝐹'''𝐴) = V → (𝐹'''𝐴) = (𝐹𝐴))
5 eqeq1 2742 . . . . . . . 8 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹'''𝐴) = ∅ ↔ (𝐹𝐴) = ∅))
65notbid 318 . . . . . . 7 ((𝐹'''𝐴) = (𝐹𝐴) → (¬ (𝐹'''𝐴) = ∅ ↔ ¬ (𝐹𝐴) = ∅))
76biimpd 228 . . . . . 6 ((𝐹'''𝐴) = (𝐹𝐴) → (¬ (𝐹'''𝐴) = ∅ → ¬ (𝐹𝐴) = ∅))
84, 7syl 17 . . . . 5 (¬ (𝐹'''𝐴) = V → (¬ (𝐹'''𝐴) = ∅ → ¬ (𝐹𝐴) = ∅))
98impcom 408 . . . 4 ((¬ (𝐹'''𝐴) = ∅ ∧ ¬ (𝐹'''𝐴) = V) → ¬ (𝐹𝐴) = ∅)
101, 9sylbi 216 . . 3 (¬ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V) → ¬ (𝐹𝐴) = ∅)
1110con4i 114 . 2 ((𝐹𝐴) = ∅ → ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V))
12 afv0fv0 44641 . . 3 ((𝐹'''𝐴) = ∅ → (𝐹𝐴) = ∅)
13 afvpcfv0 44638 . . 3 ((𝐹'''𝐴) = V → (𝐹𝐴) = ∅)
1412, 13jaoi 854 . 2 (((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V) → (𝐹𝐴) = ∅)
1511, 14impbii 208 1 ((𝐹𝐴) = ∅ ↔ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wne 2943  Vcvv 3432  c0 4256  cfv 6433  '''cafv 44609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-aiota 44577  df-dfat 44611  df-afv 44612
This theorem is referenced by:  aovov0bi  44688
  Copyright terms: Public domain W3C validator