Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afvfv0bi Structured version   Visualization version   GIF version

Theorem afvfv0bi 47153
Description: The function's value at an argument is the empty set if and only if the value of the alternative function at this argument is either the empty set or the universe. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
afvfv0bi ((𝐹𝐴) = ∅ ↔ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V))

Proof of Theorem afvfv0bi
StepHypRef Expression
1 ioran 985 . . . 4 (¬ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V) ↔ (¬ (𝐹'''𝐴) = ∅ ∧ ¬ (𝐹'''𝐴) = V))
2 df-ne 2926 . . . . . . 7 ((𝐹'''𝐴) ≠ V ↔ ¬ (𝐹'''𝐴) = V)
3 afvnufveq 47148 . . . . . . 7 ((𝐹'''𝐴) ≠ V → (𝐹'''𝐴) = (𝐹𝐴))
42, 3sylbir 235 . . . . . 6 (¬ (𝐹'''𝐴) = V → (𝐹'''𝐴) = (𝐹𝐴))
5 eqeq1 2733 . . . . . . . 8 ((𝐹'''𝐴) = (𝐹𝐴) → ((𝐹'''𝐴) = ∅ ↔ (𝐹𝐴) = ∅))
65notbid 318 . . . . . . 7 ((𝐹'''𝐴) = (𝐹𝐴) → (¬ (𝐹'''𝐴) = ∅ ↔ ¬ (𝐹𝐴) = ∅))
76biimpd 229 . . . . . 6 ((𝐹'''𝐴) = (𝐹𝐴) → (¬ (𝐹'''𝐴) = ∅ → ¬ (𝐹𝐴) = ∅))
84, 7syl 17 . . . . 5 (¬ (𝐹'''𝐴) = V → (¬ (𝐹'''𝐴) = ∅ → ¬ (𝐹𝐴) = ∅))
98impcom 407 . . . 4 ((¬ (𝐹'''𝐴) = ∅ ∧ ¬ (𝐹'''𝐴) = V) → ¬ (𝐹𝐴) = ∅)
101, 9sylbi 217 . . 3 (¬ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V) → ¬ (𝐹𝐴) = ∅)
1110con4i 114 . 2 ((𝐹𝐴) = ∅ → ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V))
12 afv0fv0 47150 . . 3 ((𝐹'''𝐴) = ∅ → (𝐹𝐴) = ∅)
13 afvpcfv0 47147 . . 3 ((𝐹'''𝐴) = V → (𝐹𝐴) = ∅)
1412, 13jaoi 857 . 2 (((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V) → (𝐹𝐴) = ∅)
1511, 14impbii 209 1 ((𝐹𝐴) = ∅ ↔ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wne 2925  Vcvv 3447  c0 4296  cfv 6511  '''cafv 47118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-aiota 47086  df-dfat 47120  df-afv 47121
This theorem is referenced by:  aovov0bi  47197
  Copyright terms: Public domain W3C validator