Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovrcl Structured version   Visualization version   GIF version

Theorem aovrcl 43408
Description: Reverse closure for an operation value, analogous to afvvv 43364. In contrast to ovrcl 7197, elementhood of the operation's value in a set is required, not containing an element. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
aovprc.1 Rel dom 𝐹
Assertion
Ref Expression
aovrcl ( ((𝐴𝐹𝐵)) ∈ 𝐶 → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem aovrcl
StepHypRef Expression
1 df-aov 43340 . . 3 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
21eleq1i 2903 . 2 ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐹'''⟨𝐴, 𝐵⟩) ∈ 𝐶)
3 afvvdm 43360 . . 3 ((𝐹'''⟨𝐴, 𝐵⟩) ∈ 𝐶 → ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
4 df-br 5067 . . . 4 (𝐴dom 𝐹 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
5 aovprc.1 . . . . 5 Rel dom 𝐹
65brrelex12i 5607 . . . 4 (𝐴dom 𝐹 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
74, 6sylbir 237 . . 3 (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
83, 7syl 17 . 2 ((𝐹'''⟨𝐴, 𝐵⟩) ∈ 𝐶 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
92, 8sylbi 219 1 ( ((𝐴𝐹𝐵)) ∈ 𝐶 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  Vcvv 3494  cop 4573   class class class wbr 5066  dom cdm 5555  Rel wrel 5560  '''cafv 43336   ((caov 43337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-res 5567  df-iota 6314  df-fun 6357  df-fv 6363  df-aiota 43305  df-dfat 43338  df-afv 43339  df-aov 43340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator