Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovrcl Structured version   Visualization version   GIF version

Theorem aovrcl 46450
Description: Reverse closure for an operation value, analogous to afvvv 46406. In contrast to ovrcl 7445, elementhood of the operation's value in a set is required, not containing an element. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
aovprc.1 Rel dom 𝐹
Assertion
Ref Expression
aovrcl ( ((𝐴𝐹𝐵)) ∈ 𝐶 → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem aovrcl
StepHypRef Expression
1 df-aov 46382 . . 3 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
21eleq1i 2818 . 2 ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐹'''⟨𝐴, 𝐵⟩) ∈ 𝐶)
3 afvvdm 46402 . . 3 ((𝐹'''⟨𝐴, 𝐵⟩) ∈ 𝐶 → ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
4 df-br 5142 . . . 4 (𝐴dom 𝐹 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹)
5 aovprc.1 . . . . 5 Rel dom 𝐹
65brrelex12i 5724 . . . 4 (𝐴dom 𝐹 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
74, 6sylbir 234 . . 3 (⟨𝐴, 𝐵⟩ ∈ dom 𝐹 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
83, 7syl 17 . 2 ((𝐹'''⟨𝐴, 𝐵⟩) ∈ 𝐶 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
92, 8sylbi 216 1 ( ((𝐴𝐹𝐵)) ∈ 𝐶 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098  Vcvv 3468  cop 4629   class class class wbr 5141  dom cdm 5669  Rel wrel 5674  '''cafv 46378   ((caov 46379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-res 5681  df-iota 6488  df-fun 6538  df-fv 6544  df-aiota 46346  df-dfat 46380  df-afv 46381  df-aov 46382
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator