Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > asplss | Structured version Visualization version GIF version |
Description: The algebraic span of a set of vectors is a vector subspace. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
aspval.a | ⊢ 𝐴 = (AlgSpan‘𝑊) |
aspval.v | ⊢ 𝑉 = (Base‘𝑊) |
aspval.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
asplss | ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) ∈ 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aspval.a | . . 3 ⊢ 𝐴 = (AlgSpan‘𝑊) | |
2 | aspval.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | aspval.l | . . 3 ⊢ 𝐿 = (LSubSp‘𝑊) | |
4 | 1, 2, 3 | aspval 20649 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡}) |
5 | assalmod 20639 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
6 | 5 | adantr 484 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → 𝑊 ∈ LMod) |
7 | ssrab2 3986 | . . . . 5 ⊢ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ⊆ ((SubRing‘𝑊) ∩ 𝐿) | |
8 | inss2 4136 | . . . . 5 ⊢ ((SubRing‘𝑊) ∩ 𝐿) ⊆ 𝐿 | |
9 | 7, 8 | sstri 3903 | . . . 4 ⊢ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ⊆ 𝐿 |
10 | 9 | a1i 11 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ⊆ 𝐿) |
11 | fvex 6676 | . . . . 5 ⊢ (𝐴‘𝑆) ∈ V | |
12 | 4, 11 | eqeltrrdi 2861 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ∈ V) |
13 | intex 5211 | . . . 4 ⊢ ({𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ≠ ∅ ↔ ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ∈ V) | |
14 | 12, 13 | sylibr 237 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ≠ ∅) |
15 | 3 | lssintcl 19818 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ⊆ 𝐿 ∧ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ≠ ∅) → ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ∈ 𝐿) |
16 | 6, 10, 14, 15 | syl3anc 1368 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ∈ 𝐿) |
17 | 4, 16 | eqeltrd 2852 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) ∈ 𝐿) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 {crab 3074 Vcvv 3409 ∩ cin 3859 ⊆ wss 3860 ∅c0 4227 ∩ cint 4841 ‘cfv 6340 Basecbs 16555 SubRingcsubrg 19613 LModclmod 19716 LSubSpclss 19785 AssAlgcasa 20629 AlgSpancasp 20630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-ndx 16558 df-slot 16559 df-base 16561 df-sets 16562 df-ress 16563 df-plusg 16650 df-0g 16787 df-mgm 17932 df-sgrp 17981 df-mnd 17992 df-grp 18186 df-minusg 18187 df-sbg 18188 df-mgp 19322 df-ur 19334 df-ring 19381 df-subrg 19615 df-lmod 19718 df-lss 19786 df-assa 20632 df-asp 20633 |
This theorem is referenced by: mplbas2 20816 |
Copyright terms: Public domain | W3C validator |