Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  asplss Structured version   Visualization version   GIF version

Theorem asplss 20650
 Description: The algebraic span of a set of vectors is a vector subspace. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
aspval.a 𝐴 = (AlgSpan‘𝑊)
aspval.v 𝑉 = (Base‘𝑊)
aspval.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
asplss ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) ∈ 𝐿)

Proof of Theorem asplss
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 aspval.a . . 3 𝐴 = (AlgSpan‘𝑊)
2 aspval.v . . 3 𝑉 = (Base‘𝑊)
3 aspval.l . . 3 𝐿 = (LSubSp‘𝑊)
41, 2, 3aspval 20649 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
5 assalmod 20639 . . . 4 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
65adantr 484 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → 𝑊 ∈ LMod)
7 ssrab2 3986 . . . . 5 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ⊆ ((SubRing‘𝑊) ∩ 𝐿)
8 inss2 4136 . . . . 5 ((SubRing‘𝑊) ∩ 𝐿) ⊆ 𝐿
97, 8sstri 3903 . . . 4 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ⊆ 𝐿
109a1i 11 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ⊆ 𝐿)
11 fvex 6676 . . . . 5 (𝐴𝑆) ∈ V
124, 11eqeltrrdi 2861 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ∈ V)
13 intex 5211 . . . 4 ({𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ≠ ∅ ↔ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ∈ V)
1412, 13sylibr 237 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ≠ ∅)
153lssintcl 19818 . . 3 ((𝑊 ∈ LMod ∧ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ⊆ 𝐿 ∧ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ≠ ∅) → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ∈ 𝐿)
166, 10, 14, 15syl3anc 1368 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ∈ 𝐿)
174, 16eqeltrd 2852 1 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) ∈ 𝐿)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  {crab 3074  Vcvv 3409   ∩ cin 3859   ⊆ wss 3860  ∅c0 4227  ∩ cint 4841  ‘cfv 6340  Basecbs 16555  SubRingcsubrg 19613  LModclmod 19716  LSubSpclss 19785  AssAlgcasa 20629  AlgSpancasp 20630 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-ndx 16558  df-slot 16559  df-base 16561  df-sets 16562  df-ress 16563  df-plusg 16650  df-0g 16787  df-mgm 17932  df-sgrp 17981  df-mnd 17992  df-grp 18186  df-minusg 18187  df-sbg 18188  df-mgp 19322  df-ur 19334  df-ring 19381  df-subrg 19615  df-lmod 19718  df-lss 19786  df-assa 20632  df-asp 20633 This theorem is referenced by:  mplbas2  20816
 Copyright terms: Public domain W3C validator