![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > asplss | Structured version Visualization version GIF version |
Description: The algebraic span of a set of vectors is a vector subspace. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
aspval.a | ⊢ 𝐴 = (AlgSpan‘𝑊) |
aspval.v | ⊢ 𝑉 = (Base‘𝑊) |
aspval.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
asplss | ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) ∈ 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aspval.a | . . 3 ⊢ 𝐴 = (AlgSpan‘𝑊) | |
2 | aspval.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | aspval.l | . . 3 ⊢ 𝐿 = (LSubSp‘𝑊) | |
4 | 1, 2, 3 | aspval 21736 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡}) |
5 | assalmod 21724 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → 𝑊 ∈ LMod) |
7 | ssrab2 4077 | . . . . 5 ⊢ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ⊆ ((SubRing‘𝑊) ∩ 𝐿) | |
8 | inss2 4229 | . . . . 5 ⊢ ((SubRing‘𝑊) ∩ 𝐿) ⊆ 𝐿 | |
9 | 7, 8 | sstri 3991 | . . . 4 ⊢ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ⊆ 𝐿 |
10 | 9 | a1i 11 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ⊆ 𝐿) |
11 | fvex 6904 | . . . . 5 ⊢ (𝐴‘𝑆) ∈ V | |
12 | 4, 11 | eqeltrrdi 2841 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ∈ V) |
13 | intex 5337 | . . . 4 ⊢ ({𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ≠ ∅ ↔ ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ∈ V) | |
14 | 12, 13 | sylibr 233 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ≠ ∅) |
15 | 3 | lssintcl 20807 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ⊆ 𝐿 ∧ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ≠ ∅) → ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ∈ 𝐿) |
16 | 6, 10, 14, 15 | syl3anc 1370 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ∈ 𝐿) |
17 | 4, 16 | eqeltrd 2832 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) ∈ 𝐿) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 {crab 3431 Vcvv 3473 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 ∩ cint 4950 ‘cfv 6543 Basecbs 17151 SubRingcsubrg 20465 LModclmod 20702 LSubSpclss 20774 AssAlgcasa 21714 AlgSpancasp 21715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-minusg 18865 df-sbg 18866 df-mgp 20036 df-ur 20083 df-ring 20136 df-subrg 20467 df-lmod 20704 df-lss 20775 df-assa 21717 df-asp 21718 |
This theorem is referenced by: mplbas2 21907 |
Copyright terms: Public domain | W3C validator |