MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubassa2 Structured version   Visualization version   GIF version

Theorem issubassa2 21852
Description: A subring of a unital algebra is a subspace and thus a subalgebra iff it contains all scalar multiples of the identity. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypotheses
Ref Expression
issubassa2.a 𝐴 = (algSc‘𝑊)
issubassa2.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
issubassa2 ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑆𝐿 ↔ ran 𝐴𝑆))

Proof of Theorem issubassa2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubassa2.a . . . . 5 𝐴 = (algSc‘𝑊)
2 eqid 2735 . . . . 5 (1r𝑊) = (1r𝑊)
3 eqid 2735 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
41, 2, 3rnascl 21851 . . . 4 (𝑊 ∈ AssAlg → ran 𝐴 = ((LSpan‘𝑊)‘{(1r𝑊)}))
54ad2antrr 726 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → ran 𝐴 = ((LSpan‘𝑊)‘{(1r𝑊)}))
6 issubassa2.l . . . 4 𝐿 = (LSubSp‘𝑊)
7 assalmod 21820 . . . . 5 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
87ad2antrr 726 . . . 4 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → 𝑊 ∈ LMod)
9 simpr 484 . . . 4 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → 𝑆𝐿)
102subrg1cl 20540 . . . . 5 (𝑆 ∈ (SubRing‘𝑊) → (1r𝑊) ∈ 𝑆)
1110ad2antlr 727 . . . 4 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → (1r𝑊) ∈ 𝑆)
126, 3, 8, 9, 11ellspsn5 20953 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → ((LSpan‘𝑊)‘{(1r𝑊)}) ⊆ 𝑆)
135, 12eqsstrd 3993 . 2 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → ran 𝐴𝑆)
14 subrgsubg 20537 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ∈ (SubGrp‘𝑊))
1514ad2antlr 727 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → 𝑆 ∈ (SubGrp‘𝑊))
16 simplll 774 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑊 ∈ AssAlg)
17 simprl 770 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
18 eqid 2735 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
1918subrgss 20532 . . . . . . . . 9 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
2019ad2antlr 727 . . . . . . . 8 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → 𝑆 ⊆ (Base‘𝑊))
2120sselda 3958 . . . . . . 7 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝑊))
2221adantrl 716 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑦 ∈ (Base‘𝑊))
23 eqid 2735 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
24 eqid 2735 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
25 eqid 2735 . . . . . . 7 (.r𝑊) = (.r𝑊)
26 eqid 2735 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
271, 23, 24, 18, 25, 26asclmul1 21846 . . . . . 6 ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → ((𝐴𝑥)(.r𝑊)𝑦) = (𝑥( ·𝑠𝑊)𝑦))
2816, 17, 22, 27syl3anc 1373 . . . . 5 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → ((𝐴𝑥)(.r𝑊)𝑦) = (𝑥( ·𝑠𝑊)𝑦))
29 simpllr 775 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑆 ∈ (SubRing‘𝑊))
30 simplr 768 . . . . . . . 8 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → ran 𝐴𝑆)
311, 23, 24asclfn 21841 . . . . . . . . . 10 𝐴 Fn (Base‘(Scalar‘𝑊))
3231a1i 11 . . . . . . . . 9 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → 𝐴 Fn (Base‘(Scalar‘𝑊)))
33 fnfvelrn 7070 . . . . . . . . 9 ((𝐴 Fn (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝐴𝑥) ∈ ran 𝐴)
3432, 33sylan 580 . . . . . . . 8 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝐴𝑥) ∈ ran 𝐴)
3530, 34sseldd 3959 . . . . . . 7 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝐴𝑥) ∈ 𝑆)
3635adantrr 717 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → (𝐴𝑥) ∈ 𝑆)
37 simprr 772 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑦𝑆)
3825subrgmcl 20544 . . . . . 6 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝐴𝑥) ∈ 𝑆𝑦𝑆) → ((𝐴𝑥)(.r𝑊)𝑦) ∈ 𝑆)
3929, 36, 37, 38syl3anc 1373 . . . . 5 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → ((𝐴𝑥)(.r𝑊)𝑦) ∈ 𝑆)
4028, 39eqeltrrd 2835 . . . 4 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)
4140ralrimivva 3187 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑆 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)
4223, 24, 18, 26, 6islss4 20919 . . . . 5 (𝑊 ∈ LMod → (𝑆𝐿 ↔ (𝑆 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑆 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)))
437, 42syl 17 . . . 4 (𝑊 ∈ AssAlg → (𝑆𝐿 ↔ (𝑆 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑆 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)))
4443ad2antrr 726 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → (𝑆𝐿 ↔ (𝑆 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑆 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)))
4515, 41, 44mpbir2and 713 . 2 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → 𝑆𝐿)
4613, 45impbida 800 1 ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑆𝐿 ↔ ran 𝐴𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wss 3926  {csn 4601  ran crn 5655   Fn wfn 6526  cfv 6531  (class class class)co 7405  Basecbs 17228  .rcmulr 17272  Scalarcsca 17274   ·𝑠 cvsca 17275  SubGrpcsubg 19103  1rcur 20141  SubRingcsubrg 20529  LModclmod 20817  LSubSpclss 20888  LSpanclspn 20928  AssAlgcasa 21810  algSccascl 21812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-lss 20889  df-lsp 20929  df-assa 21813  df-ascl 21815
This theorem is referenced by:  rnasclassa  21855  aspval2  21858
  Copyright terms: Public domain W3C validator