MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubassa2 Structured version   Visualization version   GIF version

Theorem issubassa2 21866
Description: A subring of a unital algebra is a subspace and thus a subalgebra iff it contains all scalar multiples of the identity. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypotheses
Ref Expression
issubassa2.a 𝐴 = (algSc‘𝑊)
issubassa2.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
issubassa2 ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑆𝐿 ↔ ran 𝐴𝑆))

Proof of Theorem issubassa2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubassa2.a . . . . 5 𝐴 = (algSc‘𝑊)
2 eqid 2734 . . . . 5 (1r𝑊) = (1r𝑊)
3 eqid 2734 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
41, 2, 3rnascl 21865 . . . 4 (𝑊 ∈ AssAlg → ran 𝐴 = ((LSpan‘𝑊)‘{(1r𝑊)}))
54ad2antrr 726 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → ran 𝐴 = ((LSpan‘𝑊)‘{(1r𝑊)}))
6 issubassa2.l . . . 4 𝐿 = (LSubSp‘𝑊)
7 assalmod 21834 . . . . 5 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
87ad2antrr 726 . . . 4 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → 𝑊 ∈ LMod)
9 simpr 484 . . . 4 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → 𝑆𝐿)
102subrg1cl 20548 . . . . 5 (𝑆 ∈ (SubRing‘𝑊) → (1r𝑊) ∈ 𝑆)
1110ad2antlr 727 . . . 4 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → (1r𝑊) ∈ 𝑆)
126, 3, 8, 9, 11ellspsn5 20962 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → ((LSpan‘𝑊)‘{(1r𝑊)}) ⊆ 𝑆)
135, 12eqsstrd 3998 . 2 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → ran 𝐴𝑆)
14 subrgsubg 20545 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ∈ (SubGrp‘𝑊))
1514ad2antlr 727 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → 𝑆 ∈ (SubGrp‘𝑊))
16 simplll 774 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑊 ∈ AssAlg)
17 simprl 770 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
18 eqid 2734 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
1918subrgss 20540 . . . . . . . . 9 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
2019ad2antlr 727 . . . . . . . 8 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → 𝑆 ⊆ (Base‘𝑊))
2120sselda 3963 . . . . . . 7 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝑊))
2221adantrl 716 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑦 ∈ (Base‘𝑊))
23 eqid 2734 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
24 eqid 2734 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
25 eqid 2734 . . . . . . 7 (.r𝑊) = (.r𝑊)
26 eqid 2734 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
271, 23, 24, 18, 25, 26asclmul1 21860 . . . . . 6 ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → ((𝐴𝑥)(.r𝑊)𝑦) = (𝑥( ·𝑠𝑊)𝑦))
2816, 17, 22, 27syl3anc 1372 . . . . 5 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → ((𝐴𝑥)(.r𝑊)𝑦) = (𝑥( ·𝑠𝑊)𝑦))
29 simpllr 775 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑆 ∈ (SubRing‘𝑊))
30 simplr 768 . . . . . . . 8 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → ran 𝐴𝑆)
311, 23, 24asclfn 21855 . . . . . . . . . 10 𝐴 Fn (Base‘(Scalar‘𝑊))
3231a1i 11 . . . . . . . . 9 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → 𝐴 Fn (Base‘(Scalar‘𝑊)))
33 fnfvelrn 7080 . . . . . . . . 9 ((𝐴 Fn (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝐴𝑥) ∈ ran 𝐴)
3432, 33sylan 580 . . . . . . . 8 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝐴𝑥) ∈ ran 𝐴)
3530, 34sseldd 3964 . . . . . . 7 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝐴𝑥) ∈ 𝑆)
3635adantrr 717 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → (𝐴𝑥) ∈ 𝑆)
37 simprr 772 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑦𝑆)
3825subrgmcl 20552 . . . . . 6 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝐴𝑥) ∈ 𝑆𝑦𝑆) → ((𝐴𝑥)(.r𝑊)𝑦) ∈ 𝑆)
3929, 36, 37, 38syl3anc 1372 . . . . 5 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → ((𝐴𝑥)(.r𝑊)𝑦) ∈ 𝑆)
4028, 39eqeltrrd 2834 . . . 4 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)
4140ralrimivva 3189 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑆 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)
4223, 24, 18, 26, 6islss4 20928 . . . . 5 (𝑊 ∈ LMod → (𝑆𝐿 ↔ (𝑆 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑆 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)))
437, 42syl 17 . . . 4 (𝑊 ∈ AssAlg → (𝑆𝐿 ↔ (𝑆 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑆 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)))
4443ad2antrr 726 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → (𝑆𝐿 ↔ (𝑆 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑆 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)))
4515, 41, 44mpbir2and 713 . 2 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → 𝑆𝐿)
4613, 45impbida 800 1 ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑆𝐿 ↔ ran 𝐴𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wss 3931  {csn 4606  ran crn 5666   Fn wfn 6536  cfv 6541  (class class class)co 7413  Basecbs 17229  .rcmulr 17274  Scalarcsca 17276   ·𝑠 cvsca 17277  SubGrpcsubg 19107  1rcur 20146  SubRingcsubrg 20537  LModclmod 20826  LSubSpclss 20897  LSpanclspn 20937  AssAlgcasa 21824  algSccascl 21826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-0g 17457  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-grp 18923  df-minusg 18924  df-sbg 18925  df-subg 19110  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-subrng 20514  df-subrg 20538  df-lmod 20828  df-lss 20898  df-lsp 20938  df-assa 21827  df-ascl 21829
This theorem is referenced by:  rnasclassa  21869  aspval2  21872
  Copyright terms: Public domain W3C validator