Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubassa2 Structured version   Visualization version   GIF version

Theorem issubassa2 20584
 Description: A subring of a unital algebra is a subspace and thus a subalgebra iff it contains all scalar multiples of the identity. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypotheses
Ref Expression
issubassa2.a 𝐴 = (algSc‘𝑊)
issubassa2.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
issubassa2 ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑆𝐿 ↔ ran 𝐴𝑆))

Proof of Theorem issubassa2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubassa2.a . . . . 5 𝐴 = (algSc‘𝑊)
2 eqid 2798 . . . . 5 (1r𝑊) = (1r𝑊)
3 eqid 2798 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
41, 2, 3rnascl 20583 . . . 4 (𝑊 ∈ AssAlg → ran 𝐴 = ((LSpan‘𝑊)‘{(1r𝑊)}))
54ad2antrr 725 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → ran 𝐴 = ((LSpan‘𝑊)‘{(1r𝑊)}))
6 issubassa2.l . . . 4 𝐿 = (LSubSp‘𝑊)
7 assalmod 20554 . . . . 5 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
87ad2antrr 725 . . . 4 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → 𝑊 ∈ LMod)
9 simpr 488 . . . 4 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → 𝑆𝐿)
102subrg1cl 19540 . . . . 5 (𝑆 ∈ (SubRing‘𝑊) → (1r𝑊) ∈ 𝑆)
1110ad2antlr 726 . . . 4 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → (1r𝑊) ∈ 𝑆)
126, 3, 8, 9, 11lspsnel5a 19765 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → ((LSpan‘𝑊)‘{(1r𝑊)}) ⊆ 𝑆)
135, 12eqsstrd 3953 . 2 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → ran 𝐴𝑆)
14 subrgsubg 19538 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ∈ (SubGrp‘𝑊))
1514ad2antlr 726 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → 𝑆 ∈ (SubGrp‘𝑊))
16 simplll 774 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑊 ∈ AssAlg)
17 simprl 770 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
18 eqid 2798 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
1918subrgss 19533 . . . . . . . . 9 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
2019ad2antlr 726 . . . . . . . 8 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → 𝑆 ⊆ (Base‘𝑊))
2120sselda 3915 . . . . . . 7 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝑊))
2221adantrl 715 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑦 ∈ (Base‘𝑊))
23 eqid 2798 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
24 eqid 2798 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
25 eqid 2798 . . . . . . 7 (.r𝑊) = (.r𝑊)
26 eqid 2798 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
271, 23, 24, 18, 25, 26asclmul1 20577 . . . . . 6 ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → ((𝐴𝑥)(.r𝑊)𝑦) = (𝑥( ·𝑠𝑊)𝑦))
2816, 17, 22, 27syl3anc 1368 . . . . 5 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → ((𝐴𝑥)(.r𝑊)𝑦) = (𝑥( ·𝑠𝑊)𝑦))
29 simpllr 775 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑆 ∈ (SubRing‘𝑊))
30 simplr 768 . . . . . . . 8 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → ran 𝐴𝑆)
311, 23, 24asclfn 20572 . . . . . . . . . 10 𝐴 Fn (Base‘(Scalar‘𝑊))
3231a1i 11 . . . . . . . . 9 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → 𝐴 Fn (Base‘(Scalar‘𝑊)))
33 fnfvelrn 6826 . . . . . . . . 9 ((𝐴 Fn (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝐴𝑥) ∈ ran 𝐴)
3432, 33sylan 583 . . . . . . . 8 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝐴𝑥) ∈ ran 𝐴)
3530, 34sseldd 3916 . . . . . . 7 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝐴𝑥) ∈ 𝑆)
3635adantrr 716 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → (𝐴𝑥) ∈ 𝑆)
37 simprr 772 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑦𝑆)
3825subrgmcl 19544 . . . . . 6 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝐴𝑥) ∈ 𝑆𝑦𝑆) → ((𝐴𝑥)(.r𝑊)𝑦) ∈ 𝑆)
3929, 36, 37, 38syl3anc 1368 . . . . 5 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → ((𝐴𝑥)(.r𝑊)𝑦) ∈ 𝑆)
4028, 39eqeltrrd 2891 . . . 4 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)
4140ralrimivva 3156 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑆 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)
4223, 24, 18, 26, 6islss4 19731 . . . . 5 (𝑊 ∈ LMod → (𝑆𝐿 ↔ (𝑆 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑆 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)))
437, 42syl 17 . . . 4 (𝑊 ∈ AssAlg → (𝑆𝐿 ↔ (𝑆 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑆 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)))
4443ad2antrr 725 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → (𝑆𝐿 ↔ (𝑆 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑆 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)))
4515, 41, 44mpbir2and 712 . 2 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → 𝑆𝐿)
4613, 45impbida 800 1 ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑆𝐿 ↔ ran 𝐴𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106   ⊆ wss 3881  {csn 4525  ran crn 5521   Fn wfn 6320  ‘cfv 6325  (class class class)co 7136  Basecbs 16478  .rcmulr 16561  Scalarcsca 16563   ·𝑠 cvsca 16564  SubGrpcsubg 18269  1rcur 19248  SubRingcsubrg 19528  LModclmod 19631  LSubSpclss 19700  LSpanclspn 19740  AssAlgcasa 20544  algSccascl 20546 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-2 11691  df-3 11692  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18272  df-mgp 19237  df-ur 19249  df-ring 19296  df-subrg 19530  df-lmod 19633  df-lss 19701  df-lsp 19741  df-assa 20547  df-ascl 20549 This theorem is referenced by:  rnasclassa  20587  aspval2  20590
 Copyright terms: Public domain W3C validator