MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubassa2 Structured version   Visualization version   GIF version

Theorem issubassa2 21096
Description: A subring of a unital algebra is a subspace and thus a subalgebra iff it contains all scalar multiples of the identity. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypotheses
Ref Expression
issubassa2.a 𝐴 = (algSc‘𝑊)
issubassa2.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
issubassa2 ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑆𝐿 ↔ ran 𝐴𝑆))

Proof of Theorem issubassa2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubassa2.a . . . . 5 𝐴 = (algSc‘𝑊)
2 eqid 2738 . . . . 5 (1r𝑊) = (1r𝑊)
3 eqid 2738 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
41, 2, 3rnascl 21095 . . . 4 (𝑊 ∈ AssAlg → ran 𝐴 = ((LSpan‘𝑊)‘{(1r𝑊)}))
54ad2antrr 723 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → ran 𝐴 = ((LSpan‘𝑊)‘{(1r𝑊)}))
6 issubassa2.l . . . 4 𝐿 = (LSubSp‘𝑊)
7 assalmod 21067 . . . . 5 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
87ad2antrr 723 . . . 4 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → 𝑊 ∈ LMod)
9 simpr 485 . . . 4 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → 𝑆𝐿)
102subrg1cl 20032 . . . . 5 (𝑆 ∈ (SubRing‘𝑊) → (1r𝑊) ∈ 𝑆)
1110ad2antlr 724 . . . 4 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → (1r𝑊) ∈ 𝑆)
126, 3, 8, 9, 11lspsnel5a 20258 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → ((LSpan‘𝑊)‘{(1r𝑊)}) ⊆ 𝑆)
135, 12eqsstrd 3959 . 2 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ 𝑆𝐿) → ran 𝐴𝑆)
14 subrgsubg 20030 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ∈ (SubGrp‘𝑊))
1514ad2antlr 724 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → 𝑆 ∈ (SubGrp‘𝑊))
16 simplll 772 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑊 ∈ AssAlg)
17 simprl 768 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
18 eqid 2738 . . . . . . . . . 10 (Base‘𝑊) = (Base‘𝑊)
1918subrgss 20025 . . . . . . . . 9 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
2019ad2antlr 724 . . . . . . . 8 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → 𝑆 ⊆ (Base‘𝑊))
2120sselda 3921 . . . . . . 7 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ 𝑦𝑆) → 𝑦 ∈ (Base‘𝑊))
2221adantrl 713 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑦 ∈ (Base‘𝑊))
23 eqid 2738 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
24 eqid 2738 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
25 eqid 2738 . . . . . . 7 (.r𝑊) = (.r𝑊)
26 eqid 2738 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
271, 23, 24, 18, 25, 26asclmul1 21090 . . . . . 6 ((𝑊 ∈ AssAlg ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → ((𝐴𝑥)(.r𝑊)𝑦) = (𝑥( ·𝑠𝑊)𝑦))
2816, 17, 22, 27syl3anc 1370 . . . . 5 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → ((𝐴𝑥)(.r𝑊)𝑦) = (𝑥( ·𝑠𝑊)𝑦))
29 simpllr 773 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑆 ∈ (SubRing‘𝑊))
30 simplr 766 . . . . . . . 8 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → ran 𝐴𝑆)
311, 23, 24asclfn 21085 . . . . . . . . . 10 𝐴 Fn (Base‘(Scalar‘𝑊))
3231a1i 11 . . . . . . . . 9 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → 𝐴 Fn (Base‘(Scalar‘𝑊)))
33 fnfvelrn 6958 . . . . . . . . 9 ((𝐴 Fn (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝐴𝑥) ∈ ran 𝐴)
3432, 33sylan 580 . . . . . . . 8 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝐴𝑥) ∈ ran 𝐴)
3530, 34sseldd 3922 . . . . . . 7 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝐴𝑥) ∈ 𝑆)
3635adantrr 714 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → (𝐴𝑥) ∈ 𝑆)
37 simprr 770 . . . . . 6 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → 𝑦𝑆)
3825subrgmcl 20036 . . . . . 6 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝐴𝑥) ∈ 𝑆𝑦𝑆) → ((𝐴𝑥)(.r𝑊)𝑦) ∈ 𝑆)
3929, 36, 37, 38syl3anc 1370 . . . . 5 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → ((𝐴𝑥)(.r𝑊)𝑦) ∈ 𝑆)
4028, 39eqeltrrd 2840 . . . 4 ((((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑆)) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)
4140ralrimivva 3123 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑆 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)
4223, 24, 18, 26, 6islss4 20224 . . . . 5 (𝑊 ∈ LMod → (𝑆𝐿 ↔ (𝑆 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑆 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)))
437, 42syl 17 . . . 4 (𝑊 ∈ AssAlg → (𝑆𝐿 ↔ (𝑆 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑆 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)))
4443ad2antrr 723 . . 3 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → (𝑆𝐿 ↔ (𝑆 ∈ (SubGrp‘𝑊) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦𝑆 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑆)))
4515, 41, 44mpbir2and 710 . 2 (((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) ∧ ran 𝐴𝑆) → 𝑆𝐿)
4613, 45impbida 798 1 ((𝑊 ∈ AssAlg ∧ 𝑆 ∈ (SubRing‘𝑊)) → (𝑆𝐿 ↔ ran 𝐴𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887  {csn 4561  ran crn 5590   Fn wfn 6428  cfv 6433  (class class class)co 7275  Basecbs 16912  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  SubGrpcsubg 18749  1rcur 19737  SubRingcsubrg 20020  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  AssAlgcasa 21057  algSccascl 21059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-mgp 19721  df-ur 19738  df-ring 19785  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-assa 21060  df-ascl 21062
This theorem is referenced by:  rnasclassa  21099  aspval2  21102
  Copyright terms: Public domain W3C validator