MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubassa2 Structured version   Visualization version   GIF version

Theorem issubassa2 21446
Description: A subring of a unital algebra is a subspace and thus a subalgebra iff it contains all scalar multiples of the identity. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypotheses
Ref Expression
issubassa2.a 𝐴 = (algScβ€˜π‘Š)
issubassa2.l 𝐿 = (LSubSpβ€˜π‘Š)
Assertion
Ref Expression
issubassa2 ((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ (𝑆 ∈ 𝐿 ↔ ran 𝐴 βŠ† 𝑆))

Proof of Theorem issubassa2
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubassa2.a . . . . 5 𝐴 = (algScβ€˜π‘Š)
2 eqid 2733 . . . . 5 (1rβ€˜π‘Š) = (1rβ€˜π‘Š)
3 eqid 2733 . . . . 5 (LSpanβ€˜π‘Š) = (LSpanβ€˜π‘Š)
41, 2, 3rnascl 21445 . . . 4 (π‘Š ∈ AssAlg β†’ ran 𝐴 = ((LSpanβ€˜π‘Š)β€˜{(1rβ€˜π‘Š)}))
54ad2antrr 725 . . 3 (((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ 𝑆 ∈ 𝐿) β†’ ran 𝐴 = ((LSpanβ€˜π‘Š)β€˜{(1rβ€˜π‘Š)}))
6 issubassa2.l . . . 4 𝐿 = (LSubSpβ€˜π‘Š)
7 assalmod 21415 . . . . 5 (π‘Š ∈ AssAlg β†’ π‘Š ∈ LMod)
87ad2antrr 725 . . . 4 (((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ 𝑆 ∈ 𝐿) β†’ π‘Š ∈ LMod)
9 simpr 486 . . . 4 (((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ 𝑆 ∈ 𝐿) β†’ 𝑆 ∈ 𝐿)
102subrg1cl 20327 . . . . 5 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ (1rβ€˜π‘Š) ∈ 𝑆)
1110ad2antlr 726 . . . 4 (((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ 𝑆 ∈ 𝐿) β†’ (1rβ€˜π‘Š) ∈ 𝑆)
126, 3, 8, 9, 11lspsnel5a 20607 . . 3 (((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ 𝑆 ∈ 𝐿) β†’ ((LSpanβ€˜π‘Š)β€˜{(1rβ€˜π‘Š)}) βŠ† 𝑆)
135, 12eqsstrd 4021 . 2 (((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ 𝑆 ∈ 𝐿) β†’ ran 𝐴 βŠ† 𝑆)
14 subrgsubg 20325 . . . 4 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ 𝑆 ∈ (SubGrpβ€˜π‘Š))
1514ad2antlr 726 . . 3 (((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ ran 𝐴 βŠ† 𝑆) β†’ 𝑆 ∈ (SubGrpβ€˜π‘Š))
16 simplll 774 . . . . . 6 ((((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ ran 𝐴 βŠ† 𝑆) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ 𝑆)) β†’ π‘Š ∈ AssAlg)
17 simprl 770 . . . . . 6 ((((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ ran 𝐴 βŠ† 𝑆) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ 𝑆)) β†’ π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)))
18 eqid 2733 . . . . . . . . . 10 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
1918subrgss 20320 . . . . . . . . 9 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ 𝑆 βŠ† (Baseβ€˜π‘Š))
2019ad2antlr 726 . . . . . . . 8 (((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ ran 𝐴 βŠ† 𝑆) β†’ 𝑆 βŠ† (Baseβ€˜π‘Š))
2120sselda 3983 . . . . . . 7 ((((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ ran 𝐴 βŠ† 𝑆) ∧ 𝑦 ∈ 𝑆) β†’ 𝑦 ∈ (Baseβ€˜π‘Š))
2221adantrl 715 . . . . . 6 ((((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ ran 𝐴 βŠ† 𝑆) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ 𝑆)) β†’ 𝑦 ∈ (Baseβ€˜π‘Š))
23 eqid 2733 . . . . . . 7 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
24 eqid 2733 . . . . . . 7 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
25 eqid 2733 . . . . . . 7 (.rβ€˜π‘Š) = (.rβ€˜π‘Š)
26 eqid 2733 . . . . . . 7 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
271, 23, 24, 18, 25, 26asclmul1 21440 . . . . . 6 ((π‘Š ∈ AssAlg ∧ π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ (Baseβ€˜π‘Š)) β†’ ((π΄β€˜π‘₯)(.rβ€˜π‘Š)𝑦) = (π‘₯( ·𝑠 β€˜π‘Š)𝑦))
2816, 17, 22, 27syl3anc 1372 . . . . 5 ((((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ ran 𝐴 βŠ† 𝑆) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ 𝑆)) β†’ ((π΄β€˜π‘₯)(.rβ€˜π‘Š)𝑦) = (π‘₯( ·𝑠 β€˜π‘Š)𝑦))
29 simpllr 775 . . . . . 6 ((((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ ran 𝐴 βŠ† 𝑆) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ 𝑆)) β†’ 𝑆 ∈ (SubRingβ€˜π‘Š))
30 simplr 768 . . . . . . . 8 ((((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ ran 𝐴 βŠ† 𝑆) ∧ π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š))) β†’ ran 𝐴 βŠ† 𝑆)
311, 23, 24asclfn 21435 . . . . . . . . . 10 𝐴 Fn (Baseβ€˜(Scalarβ€˜π‘Š))
3231a1i 11 . . . . . . . . 9 (((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ ran 𝐴 βŠ† 𝑆) β†’ 𝐴 Fn (Baseβ€˜(Scalarβ€˜π‘Š)))
33 fnfvelrn 7083 . . . . . . . . 9 ((𝐴 Fn (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š))) β†’ (π΄β€˜π‘₯) ∈ ran 𝐴)
3432, 33sylan 581 . . . . . . . 8 ((((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ ran 𝐴 βŠ† 𝑆) ∧ π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š))) β†’ (π΄β€˜π‘₯) ∈ ran 𝐴)
3530, 34sseldd 3984 . . . . . . 7 ((((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ ran 𝐴 βŠ† 𝑆) ∧ π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š))) β†’ (π΄β€˜π‘₯) ∈ 𝑆)
3635adantrr 716 . . . . . 6 ((((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ ran 𝐴 βŠ† 𝑆) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ 𝑆)) β†’ (π΄β€˜π‘₯) ∈ 𝑆)
37 simprr 772 . . . . . 6 ((((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ ran 𝐴 βŠ† 𝑆) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ 𝑆)) β†’ 𝑦 ∈ 𝑆)
3825subrgmcl 20331 . . . . . 6 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ (π΄β€˜π‘₯) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) β†’ ((π΄β€˜π‘₯)(.rβ€˜π‘Š)𝑦) ∈ 𝑆)
3929, 36, 37, 38syl3anc 1372 . . . . 5 ((((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ ran 𝐴 βŠ† 𝑆) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ 𝑆)) β†’ ((π΄β€˜π‘₯)(.rβ€˜π‘Š)𝑦) ∈ 𝑆)
4028, 39eqeltrrd 2835 . . . 4 ((((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ ran 𝐴 βŠ† 𝑆) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ 𝑆)) β†’ (π‘₯( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝑆)
4140ralrimivva 3201 . . 3 (((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ ran 𝐴 βŠ† 𝑆) β†’ βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š))βˆ€π‘¦ ∈ 𝑆 (π‘₯( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝑆)
4223, 24, 18, 26, 6islss4 20573 . . . . 5 (π‘Š ∈ LMod β†’ (𝑆 ∈ 𝐿 ↔ (𝑆 ∈ (SubGrpβ€˜π‘Š) ∧ βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š))βˆ€π‘¦ ∈ 𝑆 (π‘₯( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝑆)))
437, 42syl 17 . . . 4 (π‘Š ∈ AssAlg β†’ (𝑆 ∈ 𝐿 ↔ (𝑆 ∈ (SubGrpβ€˜π‘Š) ∧ βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š))βˆ€π‘¦ ∈ 𝑆 (π‘₯( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝑆)))
4443ad2antrr 725 . . 3 (((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ ran 𝐴 βŠ† 𝑆) β†’ (𝑆 ∈ 𝐿 ↔ (𝑆 ∈ (SubGrpβ€˜π‘Š) ∧ βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š))βˆ€π‘¦ ∈ 𝑆 (π‘₯( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝑆)))
4515, 41, 44mpbir2and 712 . 2 (((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) ∧ ran 𝐴 βŠ† 𝑆) β†’ 𝑆 ∈ 𝐿)
4613, 45impbida 800 1 ((π‘Š ∈ AssAlg ∧ 𝑆 ∈ (SubRingβ€˜π‘Š)) β†’ (𝑆 ∈ 𝐿 ↔ ran 𝐴 βŠ† 𝑆))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062   βŠ† wss 3949  {csn 4629  ran crn 5678   Fn wfn 6539  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  .rcmulr 17198  Scalarcsca 17200   ·𝑠 cvsca 17201  SubGrpcsubg 19000  1rcur 20004  SubRingcsubrg 20315  LModclmod 20471  LSubSpclss 20542  LSpanclspn 20582  AssAlgcasa 21405  algSccascl 21407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-minusg 18823  df-sbg 18824  df-subg 19003  df-mgp 19988  df-ur 20005  df-ring 20058  df-subrg 20317  df-lmod 20473  df-lss 20543  df-lsp 20583  df-assa 21408  df-ascl 21410
This theorem is referenced by:  rnasclassa  21449  aspval2  21452
  Copyright terms: Public domain W3C validator