![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-diagval | Structured version Visualization version GIF version |
Description: Value of the functionalized identity, or equivalently of the diagonal function. This expression views it as the functionalized identity, whereas bj-diagval2 37170 views it as the diagonal function. See df-bj-diag 37168 for the terminology. (Contributed by BJ, 22-Jun-2019.) |
Ref | Expression |
---|---|
bj-diagval | ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-diag 37168 | . 2 ⊢ Id = (𝑥 ∈ V ↦ ( I ↾ 𝑥)) | |
2 | reseq2 5999 | . 2 ⊢ (𝑥 = 𝐴 → ( I ↾ 𝑥) = ( I ↾ 𝐴)) | |
3 | elex 3502 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
4 | resiexg 7942 | . 2 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) | |
5 | 1, 2, 3, 4 | fvmptd3 7046 | 1 ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3481 I cid 5586 ↾ cres 5695 ‘cfv 6569 Idcdiag2 37167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-res 5705 df-iota 6522 df-fun 6571 df-fv 6577 df-bj-diag 37168 |
This theorem is referenced by: bj-diagval2 37170 |
Copyright terms: Public domain | W3C validator |