Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-diagval Structured version   Visualization version   GIF version

Theorem bj-diagval 35272
Description: Value of the functionalized identity, or equivalently of the diagonal function. This expression views it as the functionalized identity, whereas bj-diagval2 35273 views it as the diagonal function. See df-bj-diag 35271 for the terminology. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-diagval (𝐴𝑉 → (Id‘𝐴) = ( I ↾ 𝐴))

Proof of Theorem bj-diagval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-bj-diag 35271 . 2 Id = (𝑥 ∈ V ↦ ( I ↾ 𝑥))
2 reseq2 5875 . 2 (𝑥 = 𝐴 → ( I ↾ 𝑥) = ( I ↾ 𝐴))
3 elex 3440 . 2 (𝐴𝑉𝐴 ∈ V)
4 resiexg 7735 . 2 (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)
51, 2, 3, 4fvmptd3 6880 1 (𝐴𝑉 → (Id‘𝐴) = ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422   I cid 5479  cres 5582  cfv 6418  Idcdiag2 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-bj-diag 35271
This theorem is referenced by:  bj-diagval2  35273
  Copyright terms: Public domain W3C validator