![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-diagval | Structured version Visualization version GIF version |
Description: Value of the functionalized identity, or equivalently of the diagonal function. This expression views it as the functionalized identity, whereas bj-diagval2 36563 views it as the diagonal function. See df-bj-diag 36561 for the terminology. (Contributed by BJ, 22-Jun-2019.) |
Ref | Expression |
---|---|
bj-diagval | ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-diag 36561 | . 2 ⊢ Id = (𝑥 ∈ V ↦ ( I ↾ 𝑥)) | |
2 | reseq2 5970 | . 2 ⊢ (𝑥 = 𝐴 → ( I ↾ 𝑥) = ( I ↾ 𝐴)) | |
3 | elex 3487 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
4 | resiexg 7902 | . 2 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) | |
5 | 1, 2, 3, 4 | fvmptd3 7015 | 1 ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3468 I cid 5566 ↾ cres 5671 ‘cfv 6537 Idcdiag2 36560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-res 5681 df-iota 6489 df-fun 6539 df-fv 6545 df-bj-diag 36561 |
This theorem is referenced by: bj-diagval2 36563 |
Copyright terms: Public domain | W3C validator |