Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-diagval Structured version   Visualization version   GIF version

Theorem bj-diagval 37162
Description: Value of the functionalized identity, or equivalently of the diagonal function. This expression views it as the functionalized identity, whereas bj-diagval2 37163 views it as the diagonal function. See df-bj-diag 37161 for the terminology. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-diagval (𝐴𝑉 → (Id‘𝐴) = ( I ↾ 𝐴))

Proof of Theorem bj-diagval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-bj-diag 37161 . 2 Id = (𝑥 ∈ V ↦ ( I ↾ 𝑥))
2 reseq2 5945 . 2 (𝑥 = 𝐴 → ( I ↾ 𝑥) = ( I ↾ 𝐴))
3 elex 3468 . 2 (𝐴𝑉𝐴 ∈ V)
4 resiexg 7888 . 2 (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)
51, 2, 3, 4fvmptd3 6991 1 (𝐴𝑉 → (Id‘𝐴) = ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447   I cid 5532  cres 5640  cfv 6511  Idcdiag2 37160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-bj-diag 37161
This theorem is referenced by:  bj-diagval2  37163
  Copyright terms: Public domain W3C validator