Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-diagval Structured version   Visualization version   GIF version

Theorem bj-diagval 37169
Description: Value of the functionalized identity, or equivalently of the diagonal function. This expression views it as the functionalized identity, whereas bj-diagval2 37170 views it as the diagonal function. See df-bj-diag 37168 for the terminology. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-diagval (𝐴𝑉 → (Id‘𝐴) = ( I ↾ 𝐴))

Proof of Theorem bj-diagval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-bj-diag 37168 . 2 Id = (𝑥 ∈ V ↦ ( I ↾ 𝑥))
2 reseq2 5999 . 2 (𝑥 = 𝐴 → ( I ↾ 𝑥) = ( I ↾ 𝐴))
3 elex 3502 . 2 (𝐴𝑉𝐴 ∈ V)
4 resiexg 7942 . 2 (𝐴𝑉 → ( I ↾ 𝐴) ∈ V)
51, 2, 3, 4fvmptd3 7046 1 (𝐴𝑉 → (Id‘𝐴) = ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3481   I cid 5586  cres 5695  cfv 6569  Idcdiag2 37167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-res 5705  df-iota 6522  df-fun 6571  df-fv 6577  df-bj-diag 37168
This theorem is referenced by:  bj-diagval2  37170
  Copyright terms: Public domain W3C validator