| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-diagval | Structured version Visualization version GIF version | ||
| Description: Value of the functionalized identity, or equivalently of the diagonal function. This expression views it as the functionalized identity, whereas bj-diagval2 37135 views it as the diagonal function. See df-bj-diag 37133 for the terminology. (Contributed by BJ, 22-Jun-2019.) |
| Ref | Expression |
|---|---|
| bj-diagval | ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ↾ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-diag 37133 | . 2 ⊢ Id = (𝑥 ∈ V ↦ ( I ↾ 𝑥)) | |
| 2 | reseq2 5972 | . 2 ⊢ (𝑥 = 𝐴 → ( I ↾ 𝑥) = ( I ↾ 𝐴)) | |
| 3 | elex 3484 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 4 | resiexg 7916 | . 2 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) | |
| 5 | 1, 2, 3, 4 | fvmptd3 7019 | 1 ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ↾ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 I cid 5557 ↾ cres 5667 ‘cfv 6541 Idcdiag2 37132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-res 5677 df-iota 6494 df-fun 6543 df-fv 6549 df-bj-diag 37133 |
| This theorem is referenced by: bj-diagval2 37135 |
| Copyright terms: Public domain | W3C validator |