Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvexfo | Structured version Visualization version GIF version |
Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.) |
Ref | Expression |
---|---|
cbvfo.1 | ⊢ ((𝐹‘𝑥) = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvexfo | ⊢ (𝐹:𝐴–onto→𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvfo.1 | . . . . 5 ⊢ ((𝐹‘𝑥) = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 317 | . . . 4 ⊢ ((𝐹‘𝑥) = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | cbvfo 7217 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝜓)) |
4 | 3 | notbid 317 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜓)) |
5 | dfrex2 3073 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
6 | dfrex2 3073 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜓) | |
7 | 4, 5, 6 | 3bitr4g 313 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1540 ∀wral 3061 ∃wrex 3070 –onto→wfo 6477 ‘cfv 6479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-fo 6485 df-fv 6487 |
This theorem is referenced by: f1oweALT 7883 deg1ldg 25363 |
Copyright terms: Public domain | W3C validator |