MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexfo Structured version   Visualization version   GIF version

Theorem cbvexfo 7224
Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.)
Hypothesis
Ref Expression
cbvfo.1 ((𝐹𝑥) = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvexfo (𝐹:𝐴onto𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐵 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐹,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐵(𝑥)

Proof of Theorem cbvexfo
StepHypRef Expression
1 cbvfo.1 . . . . 5 ((𝐹𝑥) = 𝑦 → (𝜑𝜓))
21notbid 318 . . . 4 ((𝐹𝑥) = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
32cbvfo 7223 . . 3 (𝐹:𝐴onto𝐵 → (∀𝑥𝐴 ¬ 𝜑 ↔ ∀𝑦𝐵 ¬ 𝜓))
43notbid 318 . 2 (𝐹:𝐴onto𝐵 → (¬ ∀𝑥𝐴 ¬ 𝜑 ↔ ¬ ∀𝑦𝐵 ¬ 𝜓))
5 dfrex2 3059 . 2 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
6 dfrex2 3059 . 2 (∃𝑦𝐵 𝜓 ↔ ¬ ∀𝑦𝐵 ¬ 𝜓)
74, 5, 63bitr4g 314 1 (𝐹:𝐴onto𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1541  wral 3047  wrex 3056  ontowfo 6479  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489
This theorem is referenced by:  f1oweALT  7904  deg1ldg  26022
  Copyright terms: Public domain W3C validator