MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexfo Structured version   Visualization version   GIF version

Theorem cbvexfo 7162
Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.)
Hypothesis
Ref Expression
cbvfo.1 ((𝐹𝑥) = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvexfo (𝐹:𝐴onto𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐵 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐹,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐵(𝑥)

Proof of Theorem cbvexfo
StepHypRef Expression
1 cbvfo.1 . . . . 5 ((𝐹𝑥) = 𝑦 → (𝜑𝜓))
21notbid 318 . . . 4 ((𝐹𝑥) = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
32cbvfo 7161 . . 3 (𝐹:𝐴onto𝐵 → (∀𝑥𝐴 ¬ 𝜑 ↔ ∀𝑦𝐵 ¬ 𝜓))
43notbid 318 . 2 (𝐹:𝐴onto𝐵 → (¬ ∀𝑥𝐴 ¬ 𝜑 ↔ ¬ ∀𝑦𝐵 ¬ 𝜓))
5 dfrex2 3170 . 2 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
6 dfrex2 3170 . 2 (∃𝑦𝐵 𝜓 ↔ ¬ ∀𝑦𝐵 ¬ 𝜓)
74, 5, 63bitr4g 314 1 (𝐹:𝐴onto𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wral 3064  wrex 3065  ontowfo 6431  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441
This theorem is referenced by:  f1oweALT  7815  deg1ldg  25257
  Copyright terms: Public domain W3C validator