MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvexfo Structured version   Visualization version   GIF version

Theorem cbvexfo 7218
Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.)
Hypothesis
Ref Expression
cbvfo.1 ((𝐹𝑥) = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvexfo (𝐹:𝐴onto𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐵 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐹,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐵(𝑥)

Proof of Theorem cbvexfo
StepHypRef Expression
1 cbvfo.1 . . . . 5 ((𝐹𝑥) = 𝑦 → (𝜑𝜓))
21notbid 317 . . . 4 ((𝐹𝑥) = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
32cbvfo 7217 . . 3 (𝐹:𝐴onto𝐵 → (∀𝑥𝐴 ¬ 𝜑 ↔ ∀𝑦𝐵 ¬ 𝜓))
43notbid 317 . 2 (𝐹:𝐴onto𝐵 → (¬ ∀𝑥𝐴 ¬ 𝜑 ↔ ¬ ∀𝑦𝐵 ¬ 𝜓))
5 dfrex2 3073 . 2 (∃𝑥𝐴 𝜑 ↔ ¬ ∀𝑥𝐴 ¬ 𝜑)
6 dfrex2 3073 . 2 (∃𝑦𝐵 𝜓 ↔ ¬ ∀𝑦𝐵 ¬ 𝜓)
74, 5, 63bitr4g 313 1 (𝐹:𝐴onto𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1540  wral 3061  wrex 3070  ontowfo 6477  cfv 6479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-fo 6485  df-fv 6487
This theorem is referenced by:  f1oweALT  7883  deg1ldg  25363
  Copyright terms: Public domain W3C validator