| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvfo | Structured version Visualization version GIF version | ||
| Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| cbvfo.1 | ⊢ ((𝐹‘𝑥) = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvfo | ⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofn 6737 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | cbvfo.1 | . . . . . 6 ⊢ ((𝐹‘𝑥) = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | bicomd 223 | . . . . 5 ⊢ ((𝐹‘𝑥) = 𝑦 → (𝜓 ↔ 𝜑)) |
| 4 | 3 | eqcoms 2739 | . . . 4 ⊢ (𝑦 = (𝐹‘𝑥) → (𝜓 ↔ 𝜑)) |
| 5 | 4 | ralrn 7021 | . . 3 ⊢ (𝐹 Fn 𝐴 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
| 7 | forn 6738 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 8 | 7 | raleqdv 3292 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| 9 | 6, 8 | bitr3d 281 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∀wral 3047 ran crn 5617 Fn wfn 6476 –onto→wfo 6479 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 |
| This theorem is referenced by: cbvexfo 7224 cocan2 7226 f1oweALT 7904 supisolem 9358 qtopeu 23629 deg1leb 26025 dchrelbas4 27179 cnpconn 35262 cocanfo 37758 aks6d1c1p5 42144 |
| Copyright terms: Public domain | W3C validator |