MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvfo Structured version   Visualization version   GIF version

Theorem cbvfo 7309
Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
cbvfo.1 ((𝐹𝑥) = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvfo (𝐹:𝐴onto𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐵 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐹,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐵(𝑥)

Proof of Theorem cbvfo
StepHypRef Expression
1 fofn 6823 . . 3 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
2 cbvfo.1 . . . . . 6 ((𝐹𝑥) = 𝑦 → (𝜑𝜓))
32bicomd 223 . . . . 5 ((𝐹𝑥) = 𝑦 → (𝜓𝜑))
43eqcoms 2743 . . . 4 (𝑦 = (𝐹𝑥) → (𝜓𝜑))
54ralrn 7108 . . 3 (𝐹 Fn 𝐴 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜑))
61, 5syl 17 . 2 (𝐹:𝐴onto𝐵 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜑))
7 forn 6824 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
87raleqdv 3324 . 2 (𝐹:𝐴onto𝐵 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑦𝐵 𝜓))
96, 8bitr3d 281 1 (𝐹:𝐴onto𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wral 3059  ran crn 5690   Fn wfn 6558  ontowfo 6561  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571
This theorem is referenced by:  cbvexfo  7310  cocan2  7312  f1oweALT  7996  supisolem  9511  qtopeu  23740  deg1leb  26149  dchrelbas4  27302  cnpconn  35215  cocanfo  37706  aks6d1c1p5  42094
  Copyright terms: Public domain W3C validator