MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvfo Structured version   Visualization version   GIF version

Theorem cbvfo 7287
Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
cbvfo.1 ((𝐹𝑥) = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvfo (𝐹:𝐴onto𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐵 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐹,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐵(𝑥)

Proof of Theorem cbvfo
StepHypRef Expression
1 fofn 6797 . . 3 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
2 cbvfo.1 . . . . . 6 ((𝐹𝑥) = 𝑦 → (𝜑𝜓))
32bicomd 223 . . . . 5 ((𝐹𝑥) = 𝑦 → (𝜓𝜑))
43eqcoms 2744 . . . 4 (𝑦 = (𝐹𝑥) → (𝜓𝜑))
54ralrn 7083 . . 3 (𝐹 Fn 𝐴 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜑))
61, 5syl 17 . 2 (𝐹:𝐴onto𝐵 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥𝐴 𝜑))
7 forn 6798 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
87raleqdv 3309 . 2 (𝐹:𝐴onto𝐵 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑦𝐵 𝜓))
96, 8bitr3d 281 1 (𝐹:𝐴onto𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wral 3052  ran crn 5660   Fn wfn 6531  ontowfo 6534  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544
This theorem is referenced by:  cbvexfo  7288  cocan2  7290  f1oweALT  7976  supisolem  9491  qtopeu  23659  deg1leb  26057  dchrelbas4  27211  cnpconn  35257  cocanfo  37748  aks6d1c1p5  42130
  Copyright terms: Public domain W3C validator