| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvfo | Structured version Visualization version GIF version | ||
| Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| cbvfo.1 | ⊢ ((𝐹‘𝑥) = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvfo | ⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofn 6777 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) | |
| 2 | cbvfo.1 | . . . . . 6 ⊢ ((𝐹‘𝑥) = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | bicomd 223 | . . . . 5 ⊢ ((𝐹‘𝑥) = 𝑦 → (𝜓 ↔ 𝜑)) |
| 4 | 3 | eqcoms 2738 | . . . 4 ⊢ (𝑦 = (𝐹‘𝑥) → (𝜓 ↔ 𝜑)) |
| 5 | 4 | ralrn 7063 | . . 3 ⊢ (𝐹 Fn 𝐴 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
| 7 | forn 6778 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 8 | 7 | raleqdv 3301 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑦 ∈ ran 𝐹𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| 9 | 6, 8 | bitr3d 281 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∀wral 3045 ran crn 5642 Fn wfn 6509 –onto→wfo 6512 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 |
| This theorem is referenced by: cbvexfo 7268 cocan2 7270 f1oweALT 7954 supisolem 9432 qtopeu 23610 deg1leb 26007 dchrelbas4 27161 cnpconn 35224 cocanfo 37720 aks6d1c1p5 42107 |
| Copyright terms: Public domain | W3C validator |