MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cocan1 Structured version   Visualization version   GIF version

Theorem cocan1 7284
Description: An injection is left-cancelable. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
cocan1 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → ((𝐹𝐻) = (𝐹𝐾) ↔ 𝐻 = 𝐾))

Proof of Theorem cocan1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fvco3 6978 . . . . . 6 ((𝐻:𝐴𝐵𝑥𝐴) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
213ad2antl2 1187 . . . . 5 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → ((𝐹𝐻)‘𝑥) = (𝐹‘(𝐻𝑥)))
3 fvco3 6978 . . . . . 6 ((𝐾:𝐴𝐵𝑥𝐴) → ((𝐹𝐾)‘𝑥) = (𝐹‘(𝐾𝑥)))
433ad2antl3 1188 . . . . 5 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → ((𝐹𝐾)‘𝑥) = (𝐹‘(𝐾𝑥)))
52, 4eqeq12d 2751 . . . 4 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → (((𝐹𝐻)‘𝑥) = ((𝐹𝐾)‘𝑥) ↔ (𝐹‘(𝐻𝑥)) = (𝐹‘(𝐾𝑥))))
6 simpl1 1192 . . . . 5 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → 𝐹:𝐵1-1𝐶)
7 ffvelcdm 7071 . . . . . 6 ((𝐻:𝐴𝐵𝑥𝐴) → (𝐻𝑥) ∈ 𝐵)
873ad2antl2 1187 . . . . 5 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ 𝐵)
9 ffvelcdm 7071 . . . . . 6 ((𝐾:𝐴𝐵𝑥𝐴) → (𝐾𝑥) ∈ 𝐵)
1093ad2antl3 1188 . . . . 5 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → (𝐾𝑥) ∈ 𝐵)
11 f1fveq 7255 . . . . 5 ((𝐹:𝐵1-1𝐶 ∧ ((𝐻𝑥) ∈ 𝐵 ∧ (𝐾𝑥) ∈ 𝐵)) → ((𝐹‘(𝐻𝑥)) = (𝐹‘(𝐾𝑥)) ↔ (𝐻𝑥) = (𝐾𝑥)))
126, 8, 10, 11syl12anc 836 . . . 4 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → ((𝐹‘(𝐻𝑥)) = (𝐹‘(𝐾𝑥)) ↔ (𝐻𝑥) = (𝐾𝑥)))
135, 12bitrd 279 . . 3 (((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) ∧ 𝑥𝐴) → (((𝐹𝐻)‘𝑥) = ((𝐹𝐾)‘𝑥) ↔ (𝐻𝑥) = (𝐾𝑥)))
1413ralbidva 3161 . 2 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → (∀𝑥𝐴 ((𝐹𝐻)‘𝑥) = ((𝐹𝐾)‘𝑥) ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐾𝑥)))
15 f1f 6774 . . . . . 6 (𝐹:𝐵1-1𝐶𝐹:𝐵𝐶)
16153ad2ant1 1133 . . . . 5 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → 𝐹:𝐵𝐶)
1716ffnd 6707 . . . 4 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → 𝐹 Fn 𝐵)
18 simp2 1137 . . . 4 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → 𝐻:𝐴𝐵)
19 fnfco 6743 . . . 4 ((𝐹 Fn 𝐵𝐻:𝐴𝐵) → (𝐹𝐻) Fn 𝐴)
2017, 18, 19syl2anc 584 . . 3 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → (𝐹𝐻) Fn 𝐴)
21 simp3 1138 . . . 4 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → 𝐾:𝐴𝐵)
22 fnfco 6743 . . . 4 ((𝐹 Fn 𝐵𝐾:𝐴𝐵) → (𝐹𝐾) Fn 𝐴)
2317, 21, 22syl2anc 584 . . 3 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → (𝐹𝐾) Fn 𝐴)
24 eqfnfv 7021 . . 3 (((𝐹𝐻) Fn 𝐴 ∧ (𝐹𝐾) Fn 𝐴) → ((𝐹𝐻) = (𝐹𝐾) ↔ ∀𝑥𝐴 ((𝐹𝐻)‘𝑥) = ((𝐹𝐾)‘𝑥)))
2520, 23, 24syl2anc 584 . 2 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → ((𝐹𝐻) = (𝐹𝐾) ↔ ∀𝑥𝐴 ((𝐹𝐻)‘𝑥) = ((𝐹𝐾)‘𝑥)))
2618ffnd 6707 . . 3 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → 𝐻 Fn 𝐴)
2721ffnd 6707 . . 3 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → 𝐾 Fn 𝐴)
28 eqfnfv 7021 . . 3 ((𝐻 Fn 𝐴𝐾 Fn 𝐴) → (𝐻 = 𝐾 ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐾𝑥)))
2926, 27, 28syl2anc 584 . 2 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → (𝐻 = 𝐾 ↔ ∀𝑥𝐴 (𝐻𝑥) = (𝐾𝑥)))
3014, 25, 293bitr4d 311 1 ((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → ((𝐹𝐻) = (𝐹𝐾) ↔ 𝐻 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  ccom 5658   Fn wfn 6526  wf 6527  1-1wf1 6528  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fv 6539
This theorem is referenced by:  mapen  9155  mapfien  9420  hashfacen  14472  setcmon  18100  derangenlem  35193  subfacp1lem5  35206
  Copyright terms: Public domain W3C validator