| Step | Hyp | Ref
| Expression |
| 1 | | fvco3 7008 |
. . . . . 6
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘ 𝐻)‘𝑥) = (𝐹‘(𝐻‘𝑥))) |
| 2 | 1 | 3ad2antl2 1187 |
. . . . 5
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘ 𝐻)‘𝑥) = (𝐹‘(𝐻‘𝑥))) |
| 3 | | fvco3 7008 |
. . . . . 6
⊢ ((𝐾:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘ 𝐾)‘𝑥) = (𝐹‘(𝐾‘𝑥))) |
| 4 | 3 | 3ad2antl3 1188 |
. . . . 5
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘ 𝐾)‘𝑥) = (𝐹‘(𝐾‘𝑥))) |
| 5 | 2, 4 | eqeq12d 2753 |
. . . 4
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → (((𝐹 ∘ 𝐻)‘𝑥) = ((𝐹 ∘ 𝐾)‘𝑥) ↔ (𝐹‘(𝐻‘𝑥)) = (𝐹‘(𝐾‘𝑥)))) |
| 6 | | simpl1 1192 |
. . . . 5
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐵–1-1→𝐶) |
| 7 | | ffvelcdm 7101 |
. . . . . 6
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈ 𝐵) |
| 8 | 7 | 3ad2antl2 1187 |
. . . . 5
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) ∈ 𝐵) |
| 9 | | ffvelcdm 7101 |
. . . . . 6
⊢ ((𝐾:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐾‘𝑥) ∈ 𝐵) |
| 10 | 9 | 3ad2antl3 1188 |
. . . . 5
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐾‘𝑥) ∈ 𝐵) |
| 11 | | f1fveq 7282 |
. . . . 5
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ ((𝐻‘𝑥) ∈ 𝐵 ∧ (𝐾‘𝑥) ∈ 𝐵)) → ((𝐹‘(𝐻‘𝑥)) = (𝐹‘(𝐾‘𝑥)) ↔ (𝐻‘𝑥) = (𝐾‘𝑥))) |
| 12 | 6, 8, 10, 11 | syl12anc 837 |
. . . 4
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘(𝐻‘𝑥)) = (𝐹‘(𝐾‘𝑥)) ↔ (𝐻‘𝑥) = (𝐾‘𝑥))) |
| 13 | 5, 12 | bitrd 279 |
. . 3
⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) ∧ 𝑥 ∈ 𝐴) → (((𝐹 ∘ 𝐻)‘𝑥) = ((𝐹 ∘ 𝐾)‘𝑥) ↔ (𝐻‘𝑥) = (𝐾‘𝑥))) |
| 14 | 13 | ralbidva 3176 |
. 2
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → (∀𝑥 ∈ 𝐴 ((𝐹 ∘ 𝐻)‘𝑥) = ((𝐹 ∘ 𝐾)‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐾‘𝑥))) |
| 15 | | f1f 6804 |
. . . . . 6
⊢ (𝐹:𝐵–1-1→𝐶 → 𝐹:𝐵⟶𝐶) |
| 16 | 15 | 3ad2ant1 1134 |
. . . . 5
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → 𝐹:𝐵⟶𝐶) |
| 17 | 16 | ffnd 6737 |
. . . 4
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → 𝐹 Fn 𝐵) |
| 18 | | simp2 1138 |
. . . 4
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → 𝐻:𝐴⟶𝐵) |
| 19 | | fnfco 6773 |
. . . 4
⊢ ((𝐹 Fn 𝐵 ∧ 𝐻:𝐴⟶𝐵) → (𝐹 ∘ 𝐻) Fn 𝐴) |
| 20 | 17, 18, 19 | syl2anc 584 |
. . 3
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → (𝐹 ∘ 𝐻) Fn 𝐴) |
| 21 | | simp3 1139 |
. . . 4
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → 𝐾:𝐴⟶𝐵) |
| 22 | | fnfco 6773 |
. . . 4
⊢ ((𝐹 Fn 𝐵 ∧ 𝐾:𝐴⟶𝐵) → (𝐹 ∘ 𝐾) Fn 𝐴) |
| 23 | 17, 21, 22 | syl2anc 584 |
. . 3
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → (𝐹 ∘ 𝐾) Fn 𝐴) |
| 24 | | eqfnfv 7051 |
. . 3
⊢ (((𝐹 ∘ 𝐻) Fn 𝐴 ∧ (𝐹 ∘ 𝐾) Fn 𝐴) → ((𝐹 ∘ 𝐻) = (𝐹 ∘ 𝐾) ↔ ∀𝑥 ∈ 𝐴 ((𝐹 ∘ 𝐻)‘𝑥) = ((𝐹 ∘ 𝐾)‘𝑥))) |
| 25 | 20, 23, 24 | syl2anc 584 |
. 2
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → ((𝐹 ∘ 𝐻) = (𝐹 ∘ 𝐾) ↔ ∀𝑥 ∈ 𝐴 ((𝐹 ∘ 𝐻)‘𝑥) = ((𝐹 ∘ 𝐾)‘𝑥))) |
| 26 | 18 | ffnd 6737 |
. . 3
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → 𝐻 Fn 𝐴) |
| 27 | 21 | ffnd 6737 |
. . 3
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → 𝐾 Fn 𝐴) |
| 28 | | eqfnfv 7051 |
. . 3
⊢ ((𝐻 Fn 𝐴 ∧ 𝐾 Fn 𝐴) → (𝐻 = 𝐾 ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐾‘𝑥))) |
| 29 | 26, 27, 28 | syl2anc 584 |
. 2
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → (𝐻 = 𝐾 ↔ ∀𝑥 ∈ 𝐴 (𝐻‘𝑥) = (𝐾‘𝑥))) |
| 30 | 14, 25, 29 | 3bitr4d 311 |
1
⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐻:𝐴⟶𝐵 ∧ 𝐾:𝐴⟶𝐵) → ((𝐹 ∘ 𝐻) = (𝐹 ∘ 𝐾) ↔ 𝐻 = 𝐾)) |