| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvixpv | Structured version Visualization version GIF version | ||
| Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| cbvixpv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvixpv | ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑧‘𝑥) = (𝑧‘𝑦)) | |
| 2 | cbvixpv.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | eleq12d 2825 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑧‘𝑥) ∈ 𝐵 ↔ (𝑧‘𝑦) ∈ 𝐶)) |
| 4 | 3 | cbvralvw 3210 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶) |
| 5 | 4 | anbi2i 623 | . . 3 ⊢ ((𝑧 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶)) |
| 6 | 5 | abbii 2798 | . 2 ⊢ {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶)} |
| 7 | dfixp 8823 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} | |
| 8 | dfixp 8823 | . 2 ⊢ X𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶)} | |
| 9 | 6, 7, 8 | 3eqtr4i 2764 | 1 ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 Fn wfn 6476 ‘cfv 6481 Xcixp 8821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fn 6484 df-fv 6489 df-ixp 8822 |
| This theorem is referenced by: funcpropd 17809 invfuc 17884 natpropd 17886 dprdw 19925 dprdwd 19926 ptuni2 23492 ptbasin 23493 ptbasfi 23497 ptpjopn 23528 ptclsg 23531 dfac14 23534 ptcnp 23538 ptcmplem2 23969 ptcmpg 23973 prdsxmslem2 24445 upixp 37775 rrxsnicc 46344 ioorrnopn 46349 ioorrnopnxr 46351 ovnsubadd 46616 hoidmvlelem4 46642 hoidmvle 46644 hspdifhsp 46660 hoiqssbllem2 46667 hspmbl 46673 hoimbl 46675 opnvonmbl 46678 ovnovollem3 46702 |
| Copyright terms: Public domain | W3C validator |