MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvixpv Structured version   Visualization version   GIF version

Theorem cbvixpv 8839
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
cbvixpv.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvixpv X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvixpv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . . . 6 (𝑥 = 𝑦 → (𝑧𝑥) = (𝑧𝑦))
2 cbvixpv.1 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝐶)
31, 2eleq12d 2825 . . . . 5 (𝑥 = 𝑦 → ((𝑧𝑥) ∈ 𝐵 ↔ (𝑧𝑦) ∈ 𝐶))
43cbvralvw 3210 . . . 4 (∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵 ↔ ∀𝑦𝐴 (𝑧𝑦) ∈ 𝐶)
54anbi2i 623 . . 3 ((𝑧 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑧𝑦) ∈ 𝐶))
65abbii 2798 . 2 {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)} = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑧𝑦) ∈ 𝐶)}
7 dfixp 8823 . 2 X𝑥𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)}
8 dfixp 8823 . 2 X𝑦𝐴 𝐶 = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑧𝑦) ∈ 𝐶)}
96, 7, 83eqtr4i 2764 1 X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wral 3047   Fn wfn 6476  cfv 6481  Xcixp 8821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fn 6484  df-fv 6489  df-ixp 8822
This theorem is referenced by:  funcpropd  17809  invfuc  17884  natpropd  17886  dprdw  19925  dprdwd  19926  ptuni2  23492  ptbasin  23493  ptbasfi  23497  ptpjopn  23528  ptclsg  23531  dfac14  23534  ptcnp  23538  ptcmplem2  23969  ptcmpg  23973  prdsxmslem2  24445  upixp  37775  rrxsnicc  46344  ioorrnopn  46349  ioorrnopnxr  46351  ovnsubadd  46616  hoidmvlelem4  46642  hoidmvle  46644  hspdifhsp  46660  hoiqssbllem2  46667  hspmbl  46673  hoimbl  46675  opnvonmbl  46678  ovnovollem3  46702
  Copyright terms: Public domain W3C validator