MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvixpv Structured version   Visualization version   GIF version

Theorem cbvixpv 8849
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
cbvixpv.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvixpv X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvixpv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . . . . 6 (𝑥 = 𝑦 → (𝑧𝑥) = (𝑧𝑦))
2 cbvixpv.1 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝐶)
31, 2eleq12d 2822 . . . . 5 (𝑥 = 𝑦 → ((𝑧𝑥) ∈ 𝐵 ↔ (𝑧𝑦) ∈ 𝐶))
43cbvralvw 3207 . . . 4 (∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵 ↔ ∀𝑦𝐴 (𝑧𝑦) ∈ 𝐶)
54anbi2i 623 . . 3 ((𝑧 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑧𝑦) ∈ 𝐶))
65abbii 2796 . 2 {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)} = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑧𝑦) ∈ 𝐶)}
7 dfixp 8833 . 2 X𝑥𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)}
8 dfixp 8833 . 2 X𝑦𝐴 𝐶 = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑧𝑦) ∈ 𝐶)}
96, 7, 83eqtr4i 2762 1 X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044   Fn wfn 6481  cfv 6486  Xcixp 8831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fn 6489  df-fv 6494  df-ixp 8832
This theorem is referenced by:  funcpropd  17827  invfuc  17902  natpropd  17904  dprdw  19909  dprdwd  19910  ptuni2  23479  ptbasin  23480  ptbasfi  23484  ptpjopn  23515  ptclsg  23518  dfac14  23521  ptcnp  23525  ptcmplem2  23956  ptcmpg  23960  prdsxmslem2  24433  upixp  37711  rrxsnicc  46285  ioorrnopn  46290  ioorrnopnxr  46292  ovnsubadd  46557  hoidmvlelem4  46583  hoidmvle  46585  hspdifhsp  46601  hoiqssbllem2  46608  hspmbl  46614  hoimbl  46616  opnvonmbl  46619  ovnovollem3  46643
  Copyright terms: Public domain W3C validator