| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvixpv | Structured version Visualization version GIF version | ||
| Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| cbvixpv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvixpv | ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6881 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑧‘𝑥) = (𝑧‘𝑦)) | |
| 2 | cbvixpv.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | eleq12d 2829 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑧‘𝑥) ∈ 𝐵 ↔ (𝑧‘𝑦) ∈ 𝐶)) |
| 4 | 3 | cbvralvw 3224 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶) |
| 5 | 4 | anbi2i 623 | . . 3 ⊢ ((𝑧 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶)) |
| 6 | 5 | abbii 2803 | . 2 ⊢ {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶)} |
| 7 | dfixp 8918 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} | |
| 8 | dfixp 8918 | . 2 ⊢ X𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶)} | |
| 9 | 6, 7, 8 | 3eqtr4i 2769 | 1 ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 ∀wral 3052 Fn wfn 6531 ‘cfv 6536 Xcixp 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fn 6539 df-fv 6544 df-ixp 8917 |
| This theorem is referenced by: funcpropd 17920 invfuc 17995 natpropd 17997 dprdw 19998 dprdwd 19999 ptuni2 23519 ptbasin 23520 ptbasfi 23524 ptpjopn 23555 ptclsg 23558 dfac14 23561 ptcnp 23565 ptcmplem2 23996 ptcmpg 24000 prdsxmslem2 24473 upixp 37758 rrxsnicc 46296 ioorrnopn 46301 ioorrnopnxr 46303 ovnsubadd 46568 hoidmvlelem4 46594 hoidmvle 46596 hspdifhsp 46612 hoiqssbllem2 46619 hspmbl 46625 hoimbl 46627 opnvonmbl 46630 ovnovollem3 46654 |
| Copyright terms: Public domain | W3C validator |