MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvixpv Structured version   Visualization version   GIF version

Theorem cbvixpv 8888
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
cbvixpv.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvixpv X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvixpv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6858 . . . . . 6 (𝑥 = 𝑦 → (𝑧𝑥) = (𝑧𝑦))
2 cbvixpv.1 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝐶)
31, 2eleq12d 2822 . . . . 5 (𝑥 = 𝑦 → ((𝑧𝑥) ∈ 𝐵 ↔ (𝑧𝑦) ∈ 𝐶))
43cbvralvw 3215 . . . 4 (∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵 ↔ ∀𝑦𝐴 (𝑧𝑦) ∈ 𝐶)
54anbi2i 623 . . 3 ((𝑧 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑧𝑦) ∈ 𝐶))
65abbii 2796 . 2 {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)} = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑧𝑦) ∈ 𝐶)}
7 dfixp 8872 . 2 X𝑥𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)}
8 dfixp 8872 . 2 X𝑦𝐴 𝐶 = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑧𝑦) ∈ 𝐶)}
96, 7, 83eqtr4i 2762 1 X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044   Fn wfn 6506  cfv 6511  Xcixp 8870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fn 6514  df-fv 6519  df-ixp 8871
This theorem is referenced by:  funcpropd  17864  invfuc  17939  natpropd  17941  dprdw  19942  dprdwd  19943  ptuni2  23463  ptbasin  23464  ptbasfi  23468  ptpjopn  23499  ptclsg  23502  dfac14  23505  ptcnp  23509  ptcmplem2  23940  ptcmpg  23944  prdsxmslem2  24417  upixp  37723  rrxsnicc  46298  ioorrnopn  46303  ioorrnopnxr  46305  ovnsubadd  46570  hoidmvlelem4  46596  hoidmvle  46598  hspdifhsp  46614  hoiqssbllem2  46621  hspmbl  46627  hoimbl  46629  opnvonmbl  46632  ovnovollem3  46656
  Copyright terms: Public domain W3C validator