![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvixpv | Structured version Visualization version GIF version |
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
cbvixpv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvixpv | ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2899 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2899 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbvixpv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbvixp 8926 | 1 ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 Xcixp 8909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3058 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-iota 6494 df-fn 6545 df-fv 6550 df-ixp 8910 |
This theorem is referenced by: funcpropd 17882 invfuc 17959 natpropd 17961 dprdw 19960 dprdwd 19961 ptuni2 23473 ptbasin 23474 ptbasfi 23478 ptpjopn 23509 ptclsg 23512 dfac14 23515 ptcnp 23519 ptcmplem2 23950 ptcmpg 23954 prdsxmslem2 24431 upixp 37196 rrxsnicc 45682 ioorrnopn 45687 ioorrnopnxr 45689 ovnsubadd 45954 hoidmvlelem4 45980 hoidmvle 45982 hspdifhsp 45998 hoiqssbllem2 46005 hspmbl 46011 hoimbl 46013 opnvonmbl 46016 ovnovollem3 46040 |
Copyright terms: Public domain | W3C validator |