MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvixpv Structured version   Visualization version   GIF version

Theorem cbvixpv 8847
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
cbvixpv.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvixpv X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvixpv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6830 . . . . . 6 (𝑥 = 𝑦 → (𝑧𝑥) = (𝑧𝑦))
2 cbvixpv.1 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝐶)
31, 2eleq12d 2827 . . . . 5 (𝑥 = 𝑦 → ((𝑧𝑥) ∈ 𝐵 ↔ (𝑧𝑦) ∈ 𝐶))
43cbvralvw 3211 . . . 4 (∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵 ↔ ∀𝑦𝐴 (𝑧𝑦) ∈ 𝐶)
54anbi2i 623 . . 3 ((𝑧 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑧𝑦) ∈ 𝐶))
65abbii 2800 . 2 {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)} = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑧𝑦) ∈ 𝐶)}
7 dfixp 8831 . 2 X𝑥𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑧𝑥) ∈ 𝐵)}
8 dfixp 8831 . 2 X𝑦𝐴 𝐶 = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑧𝑦) ∈ 𝐶)}
96, 7, 83eqtr4i 2766 1 X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  wral 3048   Fn wfn 6483  cfv 6488  Xcixp 8829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6444  df-fn 6491  df-fv 6496  df-ixp 8830
This theorem is referenced by:  funcpropd  17813  invfuc  17888  natpropd  17890  dprdw  19928  dprdwd  19929  ptuni2  23494  ptbasin  23495  ptbasfi  23499  ptpjopn  23530  ptclsg  23533  dfac14  23536  ptcnp  23540  ptcmplem2  23971  ptcmpg  23975  prdsxmslem2  24447  upixp  37792  rrxsnicc  46425  ioorrnopn  46430  ioorrnopnxr  46432  ovnsubadd  46697  hoidmvlelem4  46723  hoidmvle  46725  hspdifhsp  46741  hoiqssbllem2  46748  hspmbl  46754  hoimbl  46756  opnvonmbl  46759  ovnovollem3  46783
  Copyright terms: Public domain W3C validator