Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvixpv | Structured version Visualization version GIF version |
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
cbvixpv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvixpv | ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2906 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbvixpv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbvixp 8660 | 1 ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Xcixp 8643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fn 6421 df-fv 6426 df-ixp 8644 |
This theorem is referenced by: funcpropd 17532 invfuc 17608 natpropd 17610 dprdw 19528 dprdwd 19529 ptuni2 22635 ptbasin 22636 ptbasfi 22640 ptpjopn 22671 ptclsg 22674 dfac14 22677 ptcnp 22681 ptcmplem2 23112 ptcmpg 23116 prdsxmslem2 23591 upixp 35814 rrxsnicc 43731 ioorrnopn 43736 ioorrnopnxr 43738 ovnsubadd 44000 hoidmvlelem4 44026 hoidmvle 44028 hspdifhsp 44044 hoiqssbllem2 44051 hspmbl 44057 hoimbl 44059 opnvonmbl 44062 ovnovollem3 44086 |
Copyright terms: Public domain | W3C validator |