| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvixpv | Structured version Visualization version GIF version | ||
| Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| cbvixpv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvixpv | ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6826 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑧‘𝑥) = (𝑧‘𝑦)) | |
| 2 | cbvixpv.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | eleq12d 2822 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑧‘𝑥) ∈ 𝐵 ↔ (𝑧‘𝑦) ∈ 𝐶)) |
| 4 | 3 | cbvralvw 3207 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶) |
| 5 | 4 | anbi2i 623 | . . 3 ⊢ ((𝑧 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶)) |
| 6 | 5 | abbii 2796 | . 2 ⊢ {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶)} |
| 7 | dfixp 8833 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} | |
| 8 | dfixp 8833 | . 2 ⊢ X𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶)} | |
| 9 | 6, 7, 8 | 3eqtr4i 2762 | 1 ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 Fn wfn 6481 ‘cfv 6486 Xcixp 8831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fn 6489 df-fv 6494 df-ixp 8832 |
| This theorem is referenced by: funcpropd 17827 invfuc 17902 natpropd 17904 dprdw 19909 dprdwd 19910 ptuni2 23479 ptbasin 23480 ptbasfi 23484 ptpjopn 23515 ptclsg 23518 dfac14 23521 ptcnp 23525 ptcmplem2 23956 ptcmpg 23960 prdsxmslem2 24433 upixp 37711 rrxsnicc 46285 ioorrnopn 46290 ioorrnopnxr 46292 ovnsubadd 46557 hoidmvlelem4 46583 hoidmvle 46585 hspdifhsp 46601 hoiqssbllem2 46608 hspmbl 46614 hoimbl 46616 opnvonmbl 46619 ovnovollem3 46643 |
| Copyright terms: Public domain | W3C validator |