| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvixpv | Structured version Visualization version GIF version | ||
| Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| cbvixpv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvixpv | ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6830 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑧‘𝑥) = (𝑧‘𝑦)) | |
| 2 | cbvixpv.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | eleq12d 2827 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑧‘𝑥) ∈ 𝐵 ↔ (𝑧‘𝑦) ∈ 𝐶)) |
| 4 | 3 | cbvralvw 3211 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶) |
| 5 | 4 | anbi2i 623 | . . 3 ⊢ ((𝑧 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶)) |
| 6 | 5 | abbii 2800 | . 2 ⊢ {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶)} |
| 7 | dfixp 8831 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} | |
| 8 | dfixp 8831 | . 2 ⊢ X𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶)} | |
| 9 | 6, 7, 8 | 3eqtr4i 2766 | 1 ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 ∀wral 3048 Fn wfn 6483 ‘cfv 6488 Xcixp 8829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6444 df-fn 6491 df-fv 6496 df-ixp 8830 |
| This theorem is referenced by: funcpropd 17813 invfuc 17888 natpropd 17890 dprdw 19928 dprdwd 19929 ptuni2 23494 ptbasin 23495 ptbasfi 23499 ptpjopn 23530 ptclsg 23533 dfac14 23536 ptcnp 23540 ptcmplem2 23971 ptcmpg 23975 prdsxmslem2 24447 upixp 37792 rrxsnicc 46425 ioorrnopn 46430 ioorrnopnxr 46432 ovnsubadd 46697 hoidmvlelem4 46723 hoidmvle 46725 hspdifhsp 46741 hoiqssbllem2 46748 hspmbl 46754 hoimbl 46756 opnvonmbl 46759 ovnovollem3 46783 |
| Copyright terms: Public domain | W3C validator |