| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvixpv | Structured version Visualization version GIF version | ||
| Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| cbvixpv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvixpv | ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑧‘𝑥) = (𝑧‘𝑦)) | |
| 2 | cbvixpv.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | eleq12d 2823 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑧‘𝑥) ∈ 𝐵 ↔ (𝑧‘𝑦) ∈ 𝐶)) |
| 4 | 3 | cbvralvw 3216 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶) |
| 5 | 4 | anbi2i 623 | . . 3 ⊢ ((𝑧 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵) ↔ (𝑧 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶)) |
| 6 | 5 | abbii 2797 | . 2 ⊢ {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶)} |
| 7 | dfixp 8875 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑧‘𝑥) ∈ 𝐵)} | |
| 8 | dfixp 8875 | . 2 ⊢ X𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ (𝑧 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑧‘𝑦) ∈ 𝐶)} | |
| 9 | 6, 7, 8 | 3eqtr4i 2763 | 1 ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 Fn wfn 6509 ‘cfv 6514 Xcixp 8873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fn 6517 df-fv 6522 df-ixp 8874 |
| This theorem is referenced by: funcpropd 17871 invfuc 17946 natpropd 17948 dprdw 19949 dprdwd 19950 ptuni2 23470 ptbasin 23471 ptbasfi 23475 ptpjopn 23506 ptclsg 23509 dfac14 23512 ptcnp 23516 ptcmplem2 23947 ptcmpg 23951 prdsxmslem2 24424 upixp 37730 rrxsnicc 46305 ioorrnopn 46310 ioorrnopnxr 46312 ovnsubadd 46577 hoidmvlelem4 46603 hoidmvle 46605 hspdifhsp 46621 hoiqssbllem2 46628 hspmbl 46634 hoimbl 46636 opnvonmbl 46639 ovnovollem3 46663 |
| Copyright terms: Public domain | W3C validator |