MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcldmpt Structured version   Visualization version   GIF version

Theorem ptcldmpt 23109
Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
ptcldmpt.a (𝜑𝐴𝑉)
ptcldmpt.j ((𝜑𝑘𝐴) → 𝐽 ∈ Top)
ptcldmpt.c ((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘𝐽))
Assertion
Ref Expression
ptcldmpt (𝜑X𝑘𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘𝐴𝐽))))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝐽(𝑘)   𝑉(𝑘)

Proof of Theorem ptcldmpt
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2903 . . 3 𝑙𝐶
2 nfcsb1v 3917 . . 3 𝑘𝑙 / 𝑘𝐶
3 csbeq1a 3906 . . 3 (𝑘 = 𝑙𝐶 = 𝑙 / 𝑘𝐶)
41, 2, 3cbvixp 8904 . 2 X𝑘𝐴 𝐶 = X𝑙𝐴 𝑙 / 𝑘𝐶
5 ptcldmpt.a . . 3 (𝜑𝐴𝑉)
6 ptcldmpt.j . . . 4 ((𝜑𝑘𝐴) → 𝐽 ∈ Top)
76fmpttd 7111 . . 3 (𝜑 → (𝑘𝐴𝐽):𝐴⟶Top)
8 nfv 1917 . . . . 5 𝑘(𝜑𝑙𝐴)
9 nfcv 2903 . . . . . . 7 𝑘Clsd
10 nffvmpt1 6899 . . . . . . 7 𝑘((𝑘𝐴𝐽)‘𝑙)
119, 10nffv 6898 . . . . . 6 𝑘(Clsd‘((𝑘𝐴𝐽)‘𝑙))
122, 11nfel 2917 . . . . 5 𝑘𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙))
138, 12nfim 1899 . . . 4 𝑘((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙)))
14 eleq1w 2816 . . . . . 6 (𝑘 = 𝑙 → (𝑘𝐴𝑙𝐴))
1514anbi2d 629 . . . . 5 (𝑘 = 𝑙 → ((𝜑𝑘𝐴) ↔ (𝜑𝑙𝐴)))
16 2fveq3 6893 . . . . . 6 (𝑘 = 𝑙 → (Clsd‘((𝑘𝐴𝐽)‘𝑘)) = (Clsd‘((𝑘𝐴𝐽)‘𝑙)))
173, 16eleq12d 2827 . . . . 5 (𝑘 = 𝑙 → (𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑘)) ↔ 𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙))))
1815, 17imbi12d 344 . . . 4 (𝑘 = 𝑙 → (((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑘))) ↔ ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙)))))
19 ptcldmpt.c . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘𝐽))
20 simpr 485 . . . . . . 7 ((𝜑𝑘𝐴) → 𝑘𝐴)
21 eqid 2732 . . . . . . . 8 (𝑘𝐴𝐽) = (𝑘𝐴𝐽)
2221fvmpt2 7006 . . . . . . 7 ((𝑘𝐴𝐽 ∈ Top) → ((𝑘𝐴𝐽)‘𝑘) = 𝐽)
2320, 6, 22syl2anc 584 . . . . . 6 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐽)‘𝑘) = 𝐽)
2423fveq2d 6892 . . . . 5 ((𝜑𝑘𝐴) → (Clsd‘((𝑘𝐴𝐽)‘𝑘)) = (Clsd‘𝐽))
2519, 24eleqtrrd 2836 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑘)))
2613, 18, 25chvarfv 2233 . . 3 ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙)))
275, 7, 26ptcld 23108 . 2 (𝜑X𝑙𝐴 𝑙 / 𝑘𝐶 ∈ (Clsd‘(∏t‘(𝑘𝐴𝐽))))
284, 27eqeltrid 2837 1 (𝜑X𝑘𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘𝐴𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  csb 3892  cmpt 5230  cfv 6540  Xcixp 8887  tcpt 17380  Topctop 22386  Clsdccld 22511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-1o 8462  df-er 8699  df-ixp 8888  df-en 8936  df-fin 8939  df-fi 9402  df-topgen 17385  df-pt 17386  df-top 22387  df-bases 22440  df-cld 22514
This theorem is referenced by:  ptclsg  23110  kelac1  41790
  Copyright terms: Public domain W3C validator