Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ptcldmpt | Structured version Visualization version GIF version |
Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
ptcldmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ptcldmpt.j | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ Top) |
ptcldmpt.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘𝐽)) |
Ref | Expression |
---|---|
ptcldmpt | ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘 ∈ 𝐴 ↦ 𝐽)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2907 | . . 3 ⊢ Ⅎ𝑙𝐶 | |
2 | nfcsb1v 3857 | . . 3 ⊢ Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐶 | |
3 | csbeq1a 3846 | . . 3 ⊢ (𝑘 = 𝑙 → 𝐶 = ⦋𝑙 / 𝑘⦌𝐶) | |
4 | 1, 2, 3 | cbvixp 8702 | . 2 ⊢ X𝑘 ∈ 𝐴 𝐶 = X𝑙 ∈ 𝐴 ⦋𝑙 / 𝑘⦌𝐶 |
5 | ptcldmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | ptcldmpt.j | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ Top) | |
7 | 6 | fmpttd 6989 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐽):𝐴⟶Top) |
8 | nfv 1917 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑙 ∈ 𝐴) | |
9 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑘Clsd | |
10 | nffvmpt1 6785 | . . . . . . 7 ⊢ Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙) | |
11 | 9, 10 | nffv 6784 | . . . . . 6 ⊢ Ⅎ𝑘(Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙)) |
12 | 2, 11 | nfel 2921 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙)) |
13 | 8, 12 | nfim 1899 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))) |
14 | eleq1w 2821 | . . . . . 6 ⊢ (𝑘 = 𝑙 → (𝑘 ∈ 𝐴 ↔ 𝑙 ∈ 𝐴)) | |
15 | 14 | anbi2d 629 | . . . . 5 ⊢ (𝑘 = 𝑙 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑙 ∈ 𝐴))) |
16 | 2fveq3 6779 | . . . . . 6 ⊢ (𝑘 = 𝑙 → (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘)) = (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))) | |
17 | 3, 16 | eleq12d 2833 | . . . . 5 ⊢ (𝑘 = 𝑙 → (𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘)) ↔ ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙)))) |
18 | 15, 17 | imbi12d 345 | . . . 4 ⊢ (𝑘 = 𝑙 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘))) ↔ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))))) |
19 | ptcldmpt.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘𝐽)) | |
20 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) | |
21 | eqid 2738 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐽) = (𝑘 ∈ 𝐴 ↦ 𝐽) | |
22 | 21 | fvmpt2 6886 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝐴 ∧ 𝐽 ∈ Top) → ((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘) = 𝐽) |
23 | 20, 6, 22 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘) = 𝐽) |
24 | 23 | fveq2d 6778 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘)) = (Clsd‘𝐽)) |
25 | 19, 24 | eleqtrrd 2842 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘))) |
26 | 13, 18, 25 | chvarfv 2233 | . . 3 ⊢ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))) |
27 | 5, 7, 26 | ptcld 22764 | . 2 ⊢ (𝜑 → X𝑙 ∈ 𝐴 ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘(∏t‘(𝑘 ∈ 𝐴 ↦ 𝐽)))) |
28 | 4, 27 | eqeltrid 2843 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘 ∈ 𝐴 ↦ 𝐽)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⦋csb 3832 ↦ cmpt 5157 ‘cfv 6433 Xcixp 8685 ∏tcpt 17149 Topctop 22042 Clsdccld 22167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-er 8498 df-ixp 8686 df-en 8734 df-fin 8737 df-fi 9170 df-topgen 17154 df-pt 17155 df-top 22043 df-bases 22096 df-cld 22170 |
This theorem is referenced by: ptclsg 22766 kelac1 40888 |
Copyright terms: Public domain | W3C validator |