![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ptcldmpt | Structured version Visualization version GIF version |
Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
ptcldmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ptcldmpt.j | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ Top) |
ptcldmpt.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘𝐽)) |
Ref | Expression |
---|---|
ptcldmpt | ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘 ∈ 𝐴 ↦ 𝐽)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑙𝐶 | |
2 | nfcsb1v 3946 | . . 3 ⊢ Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐶 | |
3 | csbeq1a 3935 | . . 3 ⊢ (𝑘 = 𝑙 → 𝐶 = ⦋𝑙 / 𝑘⦌𝐶) | |
4 | 1, 2, 3 | cbvixp 8972 | . 2 ⊢ X𝑘 ∈ 𝐴 𝐶 = X𝑙 ∈ 𝐴 ⦋𝑙 / 𝑘⦌𝐶 |
5 | ptcldmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | ptcldmpt.j | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ Top) | |
7 | 6 | fmpttd 7149 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐽):𝐴⟶Top) |
8 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑙 ∈ 𝐴) | |
9 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑘Clsd | |
10 | nffvmpt1 6931 | . . . . . . 7 ⊢ Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙) | |
11 | 9, 10 | nffv 6930 | . . . . . 6 ⊢ Ⅎ𝑘(Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙)) |
12 | 2, 11 | nfel 2923 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙)) |
13 | 8, 12 | nfim 1895 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))) |
14 | eleq1w 2827 | . . . . . 6 ⊢ (𝑘 = 𝑙 → (𝑘 ∈ 𝐴 ↔ 𝑙 ∈ 𝐴)) | |
15 | 14 | anbi2d 629 | . . . . 5 ⊢ (𝑘 = 𝑙 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑙 ∈ 𝐴))) |
16 | 2fveq3 6925 | . . . . . 6 ⊢ (𝑘 = 𝑙 → (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘)) = (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))) | |
17 | 3, 16 | eleq12d 2838 | . . . . 5 ⊢ (𝑘 = 𝑙 → (𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘)) ↔ ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙)))) |
18 | 15, 17 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑙 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘))) ↔ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))))) |
19 | ptcldmpt.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘𝐽)) | |
20 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) | |
21 | eqid 2740 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐽) = (𝑘 ∈ 𝐴 ↦ 𝐽) | |
22 | 21 | fvmpt2 7040 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝐴 ∧ 𝐽 ∈ Top) → ((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘) = 𝐽) |
23 | 20, 6, 22 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘) = 𝐽) |
24 | 23 | fveq2d 6924 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘)) = (Clsd‘𝐽)) |
25 | 19, 24 | eleqtrrd 2847 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘))) |
26 | 13, 18, 25 | chvarfv 2241 | . . 3 ⊢ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))) |
27 | 5, 7, 26 | ptcld 23642 | . 2 ⊢ (𝜑 → X𝑙 ∈ 𝐴 ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘(∏t‘(𝑘 ∈ 𝐴 ↦ 𝐽)))) |
28 | 4, 27 | eqeltrid 2848 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘 ∈ 𝐴 ↦ 𝐽)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⦋csb 3921 ↦ cmpt 5249 ‘cfv 6573 Xcixp 8955 ∏tcpt 17498 Topctop 22920 Clsdccld 23045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-2o 8523 df-ixp 8956 df-en 9004 df-fin 9007 df-fi 9480 df-topgen 17503 df-pt 17504 df-top 22921 df-bases 22974 df-cld 23048 |
This theorem is referenced by: ptclsg 23644 kelac1 43020 |
Copyright terms: Public domain | W3C validator |