![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ptcldmpt | Structured version Visualization version GIF version |
Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
ptcldmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ptcldmpt.j | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ Top) |
ptcldmpt.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘𝐽)) |
Ref | Expression |
---|---|
ptcldmpt | ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘 ∈ 𝐴 ↦ 𝐽)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑙𝐶 | |
2 | nfcsb1v 3917 | . . 3 ⊢ Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐶 | |
3 | csbeq1a 3906 | . . 3 ⊢ (𝑘 = 𝑙 → 𝐶 = ⦋𝑙 / 𝑘⦌𝐶) | |
4 | 1, 2, 3 | cbvixp 8904 | . 2 ⊢ X𝑘 ∈ 𝐴 𝐶 = X𝑙 ∈ 𝐴 ⦋𝑙 / 𝑘⦌𝐶 |
5 | ptcldmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | ptcldmpt.j | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ Top) | |
7 | 6 | fmpttd 7111 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐽):𝐴⟶Top) |
8 | nfv 1917 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑙 ∈ 𝐴) | |
9 | nfcv 2903 | . . . . . . 7 ⊢ Ⅎ𝑘Clsd | |
10 | nffvmpt1 6899 | . . . . . . 7 ⊢ Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙) | |
11 | 9, 10 | nffv 6898 | . . . . . 6 ⊢ Ⅎ𝑘(Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙)) |
12 | 2, 11 | nfel 2917 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙)) |
13 | 8, 12 | nfim 1899 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))) |
14 | eleq1w 2816 | . . . . . 6 ⊢ (𝑘 = 𝑙 → (𝑘 ∈ 𝐴 ↔ 𝑙 ∈ 𝐴)) | |
15 | 14 | anbi2d 629 | . . . . 5 ⊢ (𝑘 = 𝑙 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑙 ∈ 𝐴))) |
16 | 2fveq3 6893 | . . . . . 6 ⊢ (𝑘 = 𝑙 → (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘)) = (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))) | |
17 | 3, 16 | eleq12d 2827 | . . . . 5 ⊢ (𝑘 = 𝑙 → (𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘)) ↔ ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙)))) |
18 | 15, 17 | imbi12d 344 | . . . 4 ⊢ (𝑘 = 𝑙 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘))) ↔ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))))) |
19 | ptcldmpt.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘𝐽)) | |
20 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) | |
21 | eqid 2732 | . . . . . . . 8 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐽) = (𝑘 ∈ 𝐴 ↦ 𝐽) | |
22 | 21 | fvmpt2 7006 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝐴 ∧ 𝐽 ∈ Top) → ((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘) = 𝐽) |
23 | 20, 6, 22 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘) = 𝐽) |
24 | 23 | fveq2d 6892 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘)) = (Clsd‘𝐽)) |
25 | 19, 24 | eleqtrrd 2836 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘))) |
26 | 13, 18, 25 | chvarfv 2233 | . . 3 ⊢ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))) |
27 | 5, 7, 26 | ptcld 23108 | . 2 ⊢ (𝜑 → X𝑙 ∈ 𝐴 ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘(∏t‘(𝑘 ∈ 𝐴 ↦ 𝐽)))) |
28 | 4, 27 | eqeltrid 2837 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘 ∈ 𝐴 ↦ 𝐽)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⦋csb 3892 ↦ cmpt 5230 ‘cfv 6540 Xcixp 8887 ∏tcpt 17380 Topctop 22386 Clsdccld 22511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-om 7852 df-1o 8462 df-er 8699 df-ixp 8888 df-en 8936 df-fin 8939 df-fi 9402 df-topgen 17385 df-pt 17386 df-top 22387 df-bases 22440 df-cld 22514 |
This theorem is referenced by: ptclsg 23110 kelac1 41790 |
Copyright terms: Public domain | W3C validator |