MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcldmpt Structured version   Visualization version   GIF version

Theorem ptcldmpt 23508
Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
ptcldmpt.a (𝜑𝐴𝑉)
ptcldmpt.j ((𝜑𝑘𝐴) → 𝐽 ∈ Top)
ptcldmpt.c ((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘𝐽))
Assertion
Ref Expression
ptcldmpt (𝜑X𝑘𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘𝐴𝐽))))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝐽(𝑘)   𝑉(𝑘)

Proof of Theorem ptcldmpt
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2892 . . 3 𝑙𝐶
2 nfcsb1v 3889 . . 3 𝑘𝑙 / 𝑘𝐶
3 csbeq1a 3879 . . 3 (𝑘 = 𝑙𝐶 = 𝑙 / 𝑘𝐶)
41, 2, 3cbvixp 8890 . 2 X𝑘𝐴 𝐶 = X𝑙𝐴 𝑙 / 𝑘𝐶
5 ptcldmpt.a . . 3 (𝜑𝐴𝑉)
6 ptcldmpt.j . . . 4 ((𝜑𝑘𝐴) → 𝐽 ∈ Top)
76fmpttd 7090 . . 3 (𝜑 → (𝑘𝐴𝐽):𝐴⟶Top)
8 nfv 1914 . . . . 5 𝑘(𝜑𝑙𝐴)
9 nfcv 2892 . . . . . . 7 𝑘Clsd
10 nffvmpt1 6872 . . . . . . 7 𝑘((𝑘𝐴𝐽)‘𝑙)
119, 10nffv 6871 . . . . . 6 𝑘(Clsd‘((𝑘𝐴𝐽)‘𝑙))
122, 11nfel 2907 . . . . 5 𝑘𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙))
138, 12nfim 1896 . . . 4 𝑘((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙)))
14 eleq1w 2812 . . . . . 6 (𝑘 = 𝑙 → (𝑘𝐴𝑙𝐴))
1514anbi2d 630 . . . . 5 (𝑘 = 𝑙 → ((𝜑𝑘𝐴) ↔ (𝜑𝑙𝐴)))
16 2fveq3 6866 . . . . . 6 (𝑘 = 𝑙 → (Clsd‘((𝑘𝐴𝐽)‘𝑘)) = (Clsd‘((𝑘𝐴𝐽)‘𝑙)))
173, 16eleq12d 2823 . . . . 5 (𝑘 = 𝑙 → (𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑘)) ↔ 𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙))))
1815, 17imbi12d 344 . . . 4 (𝑘 = 𝑙 → (((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑘))) ↔ ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙)))))
19 ptcldmpt.c . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘𝐽))
20 simpr 484 . . . . . . 7 ((𝜑𝑘𝐴) → 𝑘𝐴)
21 eqid 2730 . . . . . . . 8 (𝑘𝐴𝐽) = (𝑘𝐴𝐽)
2221fvmpt2 6982 . . . . . . 7 ((𝑘𝐴𝐽 ∈ Top) → ((𝑘𝐴𝐽)‘𝑘) = 𝐽)
2320, 6, 22syl2anc 584 . . . . . 6 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐽)‘𝑘) = 𝐽)
2423fveq2d 6865 . . . . 5 ((𝜑𝑘𝐴) → (Clsd‘((𝑘𝐴𝐽)‘𝑘)) = (Clsd‘𝐽))
2519, 24eleqtrrd 2832 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑘)))
2613, 18, 25chvarfv 2241 . . 3 ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙)))
275, 7, 26ptcld 23507 . 2 (𝜑X𝑙𝐴 𝑙 / 𝑘𝐶 ∈ (Clsd‘(∏t‘(𝑘𝐴𝐽))))
284, 27eqeltrid 2833 1 (𝜑X𝑘𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘𝐴𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  csb 3865  cmpt 5191  cfv 6514  Xcixp 8873  tcpt 17408  Topctop 22787  Clsdccld 22910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-2o 8438  df-ixp 8874  df-en 8922  df-fin 8925  df-fi 9369  df-topgen 17413  df-pt 17414  df-top 22788  df-bases 22840  df-cld 22913
This theorem is referenced by:  ptclsg  23509  kelac1  43059
  Copyright terms: Public domain W3C validator