|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ciclcl | Structured version Visualization version GIF version | ||
| Description: Isomorphism implies the left side is an object. (Contributed by AV, 5-Apr-2020.) | 
| Ref | Expression | 
|---|---|
| ciclcl | ⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐 ‘𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cicfval 17842 | . . . 4 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) | |
| 2 | 1 | breqd 5153 | . . 3 ⊢ (𝐶 ∈ Cat → (𝑅( ≃𝑐 ‘𝐶)𝑆 ↔ 𝑅((Iso‘𝐶) supp ∅)𝑆)) | 
| 3 | isofn 17820 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
| 4 | fvexd 6920 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) ∈ V) | |
| 5 | 0ex 5306 | . . . . . 6 ⊢ ∅ ∈ V | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (𝐶 ∈ Cat → ∅ ∈ V) | 
| 7 | df-br 5143 | . . . . . 6 ⊢ (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ 〈𝑅, 𝑆〉 ∈ ((Iso‘𝐶) supp ∅)) | |
| 8 | elsuppfng 8195 | . . . . . 6 ⊢ (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) ∈ V ∧ ∅ ∈ V) → (〈𝑅, 𝑆〉 ∈ ((Iso‘𝐶) supp ∅) ↔ (〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘〈𝑅, 𝑆〉) ≠ ∅))) | |
| 9 | 7, 8 | bitrid 283 | . . . . 5 ⊢ (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) ∈ V ∧ ∅ ∈ V) → (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ (〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘〈𝑅, 𝑆〉) ≠ ∅))) | 
| 10 | 3, 4, 6, 9 | syl3anc 1372 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ (〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘〈𝑅, 𝑆〉) ≠ ∅))) | 
| 11 | opelxp1 5726 | . . . . 5 ⊢ (〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑅 ∈ (Base‘𝐶)) | |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘〈𝑅, 𝑆〉) ≠ ∅) → 𝑅 ∈ (Base‘𝐶)) | 
| 13 | 10, 12 | biimtrdi 253 | . . 3 ⊢ (𝐶 ∈ Cat → (𝑅((Iso‘𝐶) supp ∅)𝑆 → 𝑅 ∈ (Base‘𝐶))) | 
| 14 | 2, 13 | sylbid 240 | . 2 ⊢ (𝐶 ∈ Cat → (𝑅( ≃𝑐 ‘𝐶)𝑆 → 𝑅 ∈ (Base‘𝐶))) | 
| 15 | 14 | imp 406 | 1 ⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐 ‘𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 ≠ wne 2939 Vcvv 3479 ∅c0 4332 〈cop 4631 class class class wbr 5142 × cxp 5682 Fn wfn 6555 ‘cfv 6560 (class class class)co 7432 supp csupp 8186 Basecbs 17248 Catccat 17708 Isociso 17791 ≃𝑐 ccic 17840 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-supp 8187 df-inv 17793 df-iso 17794 df-cic 17841 | 
| This theorem is referenced by: cicsym 17849 cictr 17850 cicer 17851 initoeu2 18062 | 
| Copyright terms: Public domain | W3C validator |