MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ciclcl Structured version   Visualization version   GIF version

Theorem ciclcl 17744
Description: Isomorphism implies the left side is an object. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
ciclcl ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶))

Proof of Theorem ciclcl
StepHypRef Expression
1 cicfval 17739 . . . 4 (𝐶 ∈ Cat → ( ≃𝑐𝐶) = ((Iso‘𝐶) supp ∅))
21breqd 5113 . . 3 (𝐶 ∈ Cat → (𝑅( ≃𝑐𝐶)𝑆𝑅((Iso‘𝐶) supp ∅)𝑆))
3 isofn 17717 . . . . 5 (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
4 fvexd 6855 . . . . 5 (𝐶 ∈ Cat → (Iso‘𝐶) ∈ V)
5 0ex 5257 . . . . . 6 ∅ ∈ V
65a1i 11 . . . . 5 (𝐶 ∈ Cat → ∅ ∈ V)
7 df-br 5103 . . . . . 6 (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ ⟨𝑅, 𝑆⟩ ∈ ((Iso‘𝐶) supp ∅))
8 elsuppfng 8125 . . . . . 6 (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) ∈ V ∧ ∅ ∈ V) → (⟨𝑅, 𝑆⟩ ∈ ((Iso‘𝐶) supp ∅) ↔ (⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘⟨𝑅, 𝑆⟩) ≠ ∅)))
97, 8bitrid 283 . . . . 5 (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) ∈ V ∧ ∅ ∈ V) → (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ (⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘⟨𝑅, 𝑆⟩) ≠ ∅)))
103, 4, 6, 9syl3anc 1373 . . . 4 (𝐶 ∈ Cat → (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ (⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘⟨𝑅, 𝑆⟩) ≠ ∅)))
11 opelxp1 5673 . . . . 5 (⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑅 ∈ (Base‘𝐶))
1211adantr 480 . . . 4 ((⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘⟨𝑅, 𝑆⟩) ≠ ∅) → 𝑅 ∈ (Base‘𝐶))
1310, 12biimtrdi 253 . . 3 (𝐶 ∈ Cat → (𝑅((Iso‘𝐶) supp ∅)𝑆𝑅 ∈ (Base‘𝐶)))
142, 13sylbid 240 . 2 (𝐶 ∈ Cat → (𝑅( ≃𝑐𝐶)𝑆𝑅 ∈ (Base‘𝐶)))
1514imp 406 1 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wne 2925  Vcvv 3444  c0 4292  cop 4591   class class class wbr 5102   × cxp 5629   Fn wfn 6494  cfv 6499  (class class class)co 7369   supp csupp 8116  Basecbs 17155  Catccat 17605  Isociso 17688  𝑐 ccic 17737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-supp 8117  df-inv 17690  df-iso 17691  df-cic 17738
This theorem is referenced by:  cicsym  17746  cictr  17747  cicer  17748  initoeu2  17958  oppccic  49026  cicerALT  49028  cicpropdlem  49031
  Copyright terms: Public domain W3C validator