![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ciclcl | Structured version Visualization version GIF version |
Description: Isomorphism implies the left side is an object. (Contributed by AV, 5-Apr-2020.) |
Ref | Expression |
---|---|
ciclcl | ⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐 ‘𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cicfval 17845 | . . . 4 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) | |
2 | 1 | breqd 5159 | . . 3 ⊢ (𝐶 ∈ Cat → (𝑅( ≃𝑐 ‘𝐶)𝑆 ↔ 𝑅((Iso‘𝐶) supp ∅)𝑆)) |
3 | isofn 17823 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
4 | fvexd 6922 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) ∈ V) | |
5 | 0ex 5313 | . . . . . 6 ⊢ ∅ ∈ V | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝐶 ∈ Cat → ∅ ∈ V) |
7 | df-br 5149 | . . . . . 6 ⊢ (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ 〈𝑅, 𝑆〉 ∈ ((Iso‘𝐶) supp ∅)) | |
8 | elsuppfng 8193 | . . . . . 6 ⊢ (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) ∈ V ∧ ∅ ∈ V) → (〈𝑅, 𝑆〉 ∈ ((Iso‘𝐶) supp ∅) ↔ (〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘〈𝑅, 𝑆〉) ≠ ∅))) | |
9 | 7, 8 | bitrid 283 | . . . . 5 ⊢ (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) ∈ V ∧ ∅ ∈ V) → (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ (〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘〈𝑅, 𝑆〉) ≠ ∅))) |
10 | 3, 4, 6, 9 | syl3anc 1370 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ (〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘〈𝑅, 𝑆〉) ≠ ∅))) |
11 | opelxp1 5731 | . . . . 5 ⊢ (〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑅 ∈ (Base‘𝐶)) | |
12 | 11 | adantr 480 | . . . 4 ⊢ ((〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘〈𝑅, 𝑆〉) ≠ ∅) → 𝑅 ∈ (Base‘𝐶)) |
13 | 10, 12 | biimtrdi 253 | . . 3 ⊢ (𝐶 ∈ Cat → (𝑅((Iso‘𝐶) supp ∅)𝑆 → 𝑅 ∈ (Base‘𝐶))) |
14 | 2, 13 | sylbid 240 | . 2 ⊢ (𝐶 ∈ Cat → (𝑅( ≃𝑐 ‘𝐶)𝑆 → 𝑅 ∈ (Base‘𝐶))) |
15 | 14 | imp 406 | 1 ⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐 ‘𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 ∅c0 4339 〈cop 4637 class class class wbr 5148 × cxp 5687 Fn wfn 6558 ‘cfv 6563 (class class class)co 7431 supp csupp 8184 Basecbs 17245 Catccat 17709 Isociso 17794 ≃𝑐 ccic 17843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-supp 8185 df-inv 17796 df-iso 17797 df-cic 17844 |
This theorem is referenced by: cicsym 17852 cictr 17853 cicer 17854 initoeu2 18070 |
Copyright terms: Public domain | W3C validator |