MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ciclcl Structured version   Visualization version   GIF version

Theorem ciclcl 17850
Description: Isomorphism implies the left side is an object. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
ciclcl ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶))

Proof of Theorem ciclcl
StepHypRef Expression
1 cicfval 17845 . . . 4 (𝐶 ∈ Cat → ( ≃𝑐𝐶) = ((Iso‘𝐶) supp ∅))
21breqd 5159 . . 3 (𝐶 ∈ Cat → (𝑅( ≃𝑐𝐶)𝑆𝑅((Iso‘𝐶) supp ∅)𝑆))
3 isofn 17823 . . . . 5 (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
4 fvexd 6922 . . . . 5 (𝐶 ∈ Cat → (Iso‘𝐶) ∈ V)
5 0ex 5313 . . . . . 6 ∅ ∈ V
65a1i 11 . . . . 5 (𝐶 ∈ Cat → ∅ ∈ V)
7 df-br 5149 . . . . . 6 (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ ⟨𝑅, 𝑆⟩ ∈ ((Iso‘𝐶) supp ∅))
8 elsuppfng 8193 . . . . . 6 (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) ∈ V ∧ ∅ ∈ V) → (⟨𝑅, 𝑆⟩ ∈ ((Iso‘𝐶) supp ∅) ↔ (⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘⟨𝑅, 𝑆⟩) ≠ ∅)))
97, 8bitrid 283 . . . . 5 (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) ∈ V ∧ ∅ ∈ V) → (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ (⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘⟨𝑅, 𝑆⟩) ≠ ∅)))
103, 4, 6, 9syl3anc 1370 . . . 4 (𝐶 ∈ Cat → (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ (⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘⟨𝑅, 𝑆⟩) ≠ ∅)))
11 opelxp1 5731 . . . . 5 (⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑅 ∈ (Base‘𝐶))
1211adantr 480 . . . 4 ((⟨𝑅, 𝑆⟩ ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘⟨𝑅, 𝑆⟩) ≠ ∅) → 𝑅 ∈ (Base‘𝐶))
1310, 12biimtrdi 253 . . 3 (𝐶 ∈ Cat → (𝑅((Iso‘𝐶) supp ∅)𝑆𝑅 ∈ (Base‘𝐶)))
142, 13sylbid 240 . 2 (𝐶 ∈ Cat → (𝑅( ≃𝑐𝐶)𝑆𝑅 ∈ (Base‘𝐶)))
1514imp 406 1 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2106  wne 2938  Vcvv 3478  c0 4339  cop 4637   class class class wbr 5148   × cxp 5687   Fn wfn 6558  cfv 6563  (class class class)co 7431   supp csupp 8184  Basecbs 17245  Catccat 17709  Isociso 17794  𝑐 ccic 17843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-supp 8185  df-inv 17796  df-iso 17797  df-cic 17844
This theorem is referenced by:  cicsym  17852  cictr  17853  cicer  17854  initoeu2  18070
  Copyright terms: Public domain W3C validator