Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ciclcl | Structured version Visualization version GIF version |
Description: Isomorphism implies the left side is an object. (Contributed by AV, 5-Apr-2020.) |
Ref | Expression |
---|---|
ciclcl | ⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐 ‘𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cicfval 17426 | . . . 4 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) | |
2 | 1 | breqd 5081 | . . 3 ⊢ (𝐶 ∈ Cat → (𝑅( ≃𝑐 ‘𝐶)𝑆 ↔ 𝑅((Iso‘𝐶) supp ∅)𝑆)) |
3 | isofn 17404 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
4 | fvexd 6771 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) ∈ V) | |
5 | 0ex 5226 | . . . . . 6 ⊢ ∅ ∈ V | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝐶 ∈ Cat → ∅ ∈ V) |
7 | df-br 5071 | . . . . . 6 ⊢ (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ 〈𝑅, 𝑆〉 ∈ ((Iso‘𝐶) supp ∅)) | |
8 | elsuppfng 7957 | . . . . . 6 ⊢ (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) ∈ V ∧ ∅ ∈ V) → (〈𝑅, 𝑆〉 ∈ ((Iso‘𝐶) supp ∅) ↔ (〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘〈𝑅, 𝑆〉) ≠ ∅))) | |
9 | 7, 8 | syl5bb 282 | . . . . 5 ⊢ (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) ∈ V ∧ ∅ ∈ V) → (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ (〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘〈𝑅, 𝑆〉) ≠ ∅))) |
10 | 3, 4, 6, 9 | syl3anc 1369 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ (〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘〈𝑅, 𝑆〉) ≠ ∅))) |
11 | opelxp1 5621 | . . . . 5 ⊢ (〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑅 ∈ (Base‘𝐶)) | |
12 | 11 | adantr 480 | . . . 4 ⊢ ((〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘〈𝑅, 𝑆〉) ≠ ∅) → 𝑅 ∈ (Base‘𝐶)) |
13 | 10, 12 | syl6bi 252 | . . 3 ⊢ (𝐶 ∈ Cat → (𝑅((Iso‘𝐶) supp ∅)𝑆 → 𝑅 ∈ (Base‘𝐶))) |
14 | 2, 13 | sylbid 239 | . 2 ⊢ (𝐶 ∈ Cat → (𝑅( ≃𝑐 ‘𝐶)𝑆 → 𝑅 ∈ (Base‘𝐶))) |
15 | 14 | imp 406 | 1 ⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐 ‘𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 〈cop 4564 class class class wbr 5070 × cxp 5578 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 supp csupp 7948 Basecbs 16840 Catccat 17290 Isociso 17375 ≃𝑐 ccic 17424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-supp 7949 df-inv 17377 df-iso 17378 df-cic 17425 |
This theorem is referenced by: cicsym 17433 cictr 17434 cicer 17435 initoeu2 17647 |
Copyright terms: Public domain | W3C validator |