| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ciclcl | Structured version Visualization version GIF version | ||
| Description: Isomorphism implies the left side is an object. (Contributed by AV, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| ciclcl | ⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐 ‘𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cicfval 17766 | . . . 4 ⊢ (𝐶 ∈ Cat → ( ≃𝑐 ‘𝐶) = ((Iso‘𝐶) supp ∅)) | |
| 2 | 1 | breqd 5121 | . . 3 ⊢ (𝐶 ∈ Cat → (𝑅( ≃𝑐 ‘𝐶)𝑆 ↔ 𝑅((Iso‘𝐶) supp ∅)𝑆)) |
| 3 | isofn 17744 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
| 4 | fvexd 6876 | . . . . 5 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) ∈ V) | |
| 5 | 0ex 5265 | . . . . . 6 ⊢ ∅ ∈ V | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (𝐶 ∈ Cat → ∅ ∈ V) |
| 7 | df-br 5111 | . . . . . 6 ⊢ (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ 〈𝑅, 𝑆〉 ∈ ((Iso‘𝐶) supp ∅)) | |
| 8 | elsuppfng 8151 | . . . . . 6 ⊢ (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) ∈ V ∧ ∅ ∈ V) → (〈𝑅, 𝑆〉 ∈ ((Iso‘𝐶) supp ∅) ↔ (〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘〈𝑅, 𝑆〉) ≠ ∅))) | |
| 9 | 7, 8 | bitrid 283 | . . . . 5 ⊢ (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ (Iso‘𝐶) ∈ V ∧ ∅ ∈ V) → (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ (〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘〈𝑅, 𝑆〉) ≠ ∅))) |
| 10 | 3, 4, 6, 9 | syl3anc 1373 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝑅((Iso‘𝐶) supp ∅)𝑆 ↔ (〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘〈𝑅, 𝑆〉) ≠ ∅))) |
| 11 | opelxp1 5683 | . . . . 5 ⊢ (〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑅 ∈ (Base‘𝐶)) | |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((〈𝑅, 𝑆〉 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Iso‘𝐶)‘〈𝑅, 𝑆〉) ≠ ∅) → 𝑅 ∈ (Base‘𝐶)) |
| 13 | 10, 12 | biimtrdi 253 | . . 3 ⊢ (𝐶 ∈ Cat → (𝑅((Iso‘𝐶) supp ∅)𝑆 → 𝑅 ∈ (Base‘𝐶))) |
| 14 | 2, 13 | sylbid 240 | . 2 ⊢ (𝐶 ∈ Cat → (𝑅( ≃𝑐 ‘𝐶)𝑆 → 𝑅 ∈ (Base‘𝐶))) |
| 15 | 14 | imp 406 | 1 ⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐 ‘𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∅c0 4299 〈cop 4598 class class class wbr 5110 × cxp 5639 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 supp csupp 8142 Basecbs 17186 Catccat 17632 Isociso 17715 ≃𝑐 ccic 17764 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-supp 8143 df-inv 17717 df-iso 17718 df-cic 17765 |
| This theorem is referenced by: cicsym 17773 cictr 17774 cicer 17775 initoeu2 17985 oppccic 49037 cicerALT 49039 cicpropdlem 49042 |
| Copyright terms: Public domain | W3C validator |