Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > clmgmOLD | Structured version Visualization version GIF version |
Description: Obsolete version of mgmcl 18426 as of 3-Feb-2020. Closure of a magma. (Contributed by FL, 14-Sep-2010.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
clmgmOLD.1 | ⊢ 𝑋 = dom dom 𝐺 |
Ref | Expression |
---|---|
clmgmOLD | ⊢ ((𝐺 ∈ Magma ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmgmOLD.1 | . . . . 5 ⊢ 𝑋 = dom dom 𝐺 | |
2 | 1 | ismgmOLD 36121 | . . . 4 ⊢ (𝐺 ∈ Magma → (𝐺 ∈ Magma ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋)) |
3 | fovcdm 7504 | . . . . 5 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | |
4 | 3 | 3exp 1118 | . . . 4 ⊢ (𝐺:(𝑋 × 𝑋)⟶𝑋 → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴𝐺𝐵) ∈ 𝑋))) |
5 | 2, 4 | syl6bi 252 | . . 3 ⊢ (𝐺 ∈ Magma → (𝐺 ∈ Magma → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴𝐺𝐵) ∈ 𝑋)))) |
6 | 5 | pm2.43i 52 | . 2 ⊢ (𝐺 ∈ Magma → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴𝐺𝐵) ∈ 𝑋))) |
7 | 6 | 3imp 1110 | 1 ⊢ ((𝐺 ∈ Magma ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 × cxp 5618 dom cdm 5620 ⟶wf 6475 (class class class)co 7337 Magmacmagm 36119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-fv 6487 df-ov 7340 df-mgmOLD 36120 |
This theorem is referenced by: exidcl 36147 |
Copyright terms: Public domain | W3C validator |