Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clmgmOLD Structured version   Visualization version   GIF version

Theorem clmgmOLD 37845
Description: Obsolete version of mgmcl 18570 as of 3-Feb-2020. Closure of a magma. (Contributed by FL, 14-Sep-2010.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
clmgmOLD.1 𝑋 = dom dom 𝐺
Assertion
Ref Expression
clmgmOLD ((𝐺 ∈ Magma ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)

Proof of Theorem clmgmOLD
StepHypRef Expression
1 clmgmOLD.1 . . . . 5 𝑋 = dom dom 𝐺
21ismgmOLD 37844 . . . 4 (𝐺 ∈ Magma → (𝐺 ∈ Magma ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋))
3 fovcdm 7559 . . . . 5 ((𝐺:(𝑋 × 𝑋)⟶𝑋𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
433exp 1119 . . . 4 (𝐺:(𝑋 × 𝑋)⟶𝑋 → (𝐴𝑋 → (𝐵𝑋 → (𝐴𝐺𝐵) ∈ 𝑋)))
52, 4biimtrdi 253 . . 3 (𝐺 ∈ Magma → (𝐺 ∈ Magma → (𝐴𝑋 → (𝐵𝑋 → (𝐴𝐺𝐵) ∈ 𝑋))))
65pm2.43i 52 . 2 (𝐺 ∈ Magma → (𝐴𝑋 → (𝐵𝑋 → (𝐴𝐺𝐵) ∈ 𝑋)))
763imp 1110 1 ((𝐺 ∈ Magma ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109   × cxp 5636  dom cdm 5638  wf 6507  (class class class)co 7387  Magmacmagm 37842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-mgmOLD 37843
This theorem is referenced by:  exidcl  37870
  Copyright terms: Public domain W3C validator