Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clmgmOLD Structured version   Visualization version   GIF version

Theorem clmgmOLD 37175
Description: Obsolete version of mgmcl 18565 as of 3-Feb-2020. Closure of a magma. (Contributed by FL, 14-Sep-2010.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
clmgmOLD.1 𝑋 = dom dom 𝐺
Assertion
Ref Expression
clmgmOLD ((𝐺 ∈ Magma ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)

Proof of Theorem clmgmOLD
StepHypRef Expression
1 clmgmOLD.1 . . . . 5 𝑋 = dom dom 𝐺
21ismgmOLD 37174 . . . 4 (𝐺 ∈ Magma → (𝐺 ∈ Magma ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋))
3 fovcdm 7570 . . . . 5 ((𝐺:(𝑋 × 𝑋)⟶𝑋𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
433exp 1116 . . . 4 (𝐺:(𝑋 × 𝑋)⟶𝑋 → (𝐴𝑋 → (𝐵𝑋 → (𝐴𝐺𝐵) ∈ 𝑋)))
52, 4syl6bi 253 . . 3 (𝐺 ∈ Magma → (𝐺 ∈ Magma → (𝐴𝑋 → (𝐵𝑋 → (𝐴𝐺𝐵) ∈ 𝑋))))
65pm2.43i 52 . 2 (𝐺 ∈ Magma → (𝐴𝑋 → (𝐵𝑋 → (𝐴𝐺𝐵) ∈ 𝑋)))
763imp 1108 1 ((𝐺 ∈ Magma ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098   × cxp 5664  dom cdm 5666  wf 6529  (class class class)co 7401  Magmacmagm 37172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-fv 6541  df-ov 7404  df-mgmOLD 37173
This theorem is referenced by:  exidcl  37200
  Copyright terms: Public domain W3C validator