Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > clmgmOLD | Structured version Visualization version GIF version |
Description: Obsolete version of mgmcl 18244 as of 3-Feb-2020. Closure of a magma. (Contributed by FL, 14-Sep-2010.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
clmgmOLD.1 | ⊢ 𝑋 = dom dom 𝐺 |
Ref | Expression |
---|---|
clmgmOLD | ⊢ ((𝐺 ∈ Magma ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clmgmOLD.1 | . . . . 5 ⊢ 𝑋 = dom dom 𝐺 | |
2 | 1 | ismgmOLD 35935 | . . . 4 ⊢ (𝐺 ∈ Magma → (𝐺 ∈ Magma ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋)) |
3 | fovrn 7420 | . . . . 5 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | |
4 | 3 | 3exp 1117 | . . . 4 ⊢ (𝐺:(𝑋 × 𝑋)⟶𝑋 → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴𝐺𝐵) ∈ 𝑋))) |
5 | 2, 4 | syl6bi 252 | . . 3 ⊢ (𝐺 ∈ Magma → (𝐺 ∈ Magma → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴𝐺𝐵) ∈ 𝑋)))) |
6 | 5 | pm2.43i 52 | . 2 ⊢ (𝐺 ∈ Magma → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴𝐺𝐵) ∈ 𝑋))) |
7 | 6 | 3imp 1109 | 1 ⊢ ((𝐺 ∈ Magma ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 × cxp 5578 dom cdm 5580 ⟶wf 6414 (class class class)co 7255 Magmacmagm 35933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-mgmOLD 35934 |
This theorem is referenced by: exidcl 35961 |
Copyright terms: Public domain | W3C validator |