| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clmgmOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of mgmcl 18546 as of 3-Feb-2020. Closure of a magma. (Contributed by FL, 14-Sep-2010.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| clmgmOLD.1 | ⊢ 𝑋 = dom dom 𝐺 |
| Ref | Expression |
|---|---|
| clmgmOLD | ⊢ ((𝐺 ∈ Magma ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmgmOLD.1 | . . . . 5 ⊢ 𝑋 = dom dom 𝐺 | |
| 2 | 1 | ismgmOLD 37890 | . . . 4 ⊢ (𝐺 ∈ Magma → (𝐺 ∈ Magma ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋)) |
| 3 | fovcdm 7511 | . . . . 5 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | |
| 4 | 3 | 3exp 1119 | . . . 4 ⊢ (𝐺:(𝑋 × 𝑋)⟶𝑋 → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴𝐺𝐵) ∈ 𝑋))) |
| 5 | 2, 4 | biimtrdi 253 | . . 3 ⊢ (𝐺 ∈ Magma → (𝐺 ∈ Magma → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴𝐺𝐵) ∈ 𝑋)))) |
| 6 | 5 | pm2.43i 52 | . 2 ⊢ (𝐺 ∈ Magma → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴𝐺𝐵) ∈ 𝑋))) |
| 7 | 6 | 3imp 1110 | 1 ⊢ ((𝐺 ∈ Magma ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 × cxp 5609 dom cdm 5611 ⟶wf 6472 (class class class)co 7341 Magmacmagm 37888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7344 df-mgmOLD 37889 |
| This theorem is referenced by: exidcl 37916 |
| Copyright terms: Public domain | W3C validator |