Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clmgmOLD Structured version   Visualization version   GIF version

Theorem clmgmOLD 37811
Description: Obsolete version of mgmcl 18681 as of 3-Feb-2020. Closure of a magma. (Contributed by FL, 14-Sep-2010.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
clmgmOLD.1 𝑋 = dom dom 𝐺
Assertion
Ref Expression
clmgmOLD ((𝐺 ∈ Magma ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)

Proof of Theorem clmgmOLD
StepHypRef Expression
1 clmgmOLD.1 . . . . 5 𝑋 = dom dom 𝐺
21ismgmOLD 37810 . . . 4 (𝐺 ∈ Magma → (𝐺 ∈ Magma ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋))
3 fovcdm 7620 . . . . 5 ((𝐺:(𝑋 × 𝑋)⟶𝑋𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
433exp 1119 . . . 4 (𝐺:(𝑋 × 𝑋)⟶𝑋 → (𝐴𝑋 → (𝐵𝑋 → (𝐴𝐺𝐵) ∈ 𝑋)))
52, 4biimtrdi 253 . . 3 (𝐺 ∈ Magma → (𝐺 ∈ Magma → (𝐴𝑋 → (𝐵𝑋 → (𝐴𝐺𝐵) ∈ 𝑋))))
65pm2.43i 52 . 2 (𝐺 ∈ Magma → (𝐴𝑋 → (𝐵𝑋 → (𝐴𝐺𝐵) ∈ 𝑋)))
763imp 1111 1 ((𝐺 ∈ Magma ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108   × cxp 5698  dom cdm 5700  wf 6569  (class class class)co 7448  Magmacmagm 37808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-mgmOLD 37809
This theorem is referenced by:  exidcl  37836
  Copyright terms: Public domain W3C validator