| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fovcdm | Structured version Visualization version GIF version | ||
| Description: An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006.) |
| Ref | Expression |
|---|---|
| fovcdm | ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5691 | . . 3 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) | |
| 2 | df-ov 7406 | . . . 4 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 3 | ffvelcdm 7070 | . . . 4 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) → (𝐹‘〈𝐴, 𝐵〉) ∈ 𝐶) | |
| 4 | 2, 3 | eqeltrid 2838 | . . 3 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶) |
| 5 | 1, 4 | sylan2 593 | . 2 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶) |
| 6 | 5 | 3impb 1114 | 1 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2108 〈cop 4607 × cxp 5652 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 |
| This theorem is referenced by: fovcdmda 7576 fovcdmd 7577 ovmpoelrn 8069 curry1f 8103 curry2f 8105 mapxpen 9155 axdc4lem 10467 axdc4uzlem 13999 imasmnd2 18750 grpsubcl 19001 imasgrp2 19036 imasring 20288 tsmsxplem1 24089 psmetcl 24244 xmetcl 24268 metcl 24269 blssm 24355 mbfi1fseqlem3 25668 mbfi1fseqlem4 25669 mbfi1fseqlem5 25670 grpocl 30427 grpodivcl 30466 vccl 30490 nvmcl 30573 cvmliftphtlem 35285 matunitlindflem1 37586 isbnd3 37754 clmgmOLD 37821 rngocl 37871 isdrngo2 37928 |
| Copyright terms: Public domain | W3C validator |