![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fovcdm | Structured version Visualization version GIF version |
Description: An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006.) |
Ref | Expression |
---|---|
fovcdm | ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5712 | . . 3 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆)) | |
2 | df-ov 7414 | . . . 4 ⊢ (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩) | |
3 | ffvelcdm 7082 | . . . 4 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆)) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ 𝐶) | |
4 | 2, 3 | eqeltrid 2835 | . . 3 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶) |
5 | 1, 4 | sylan2 591 | . 2 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶) |
6 | 5 | 3impb 1113 | 1 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 ∈ wcel 2104 ⟨cop 4633 × cxp 5673 ⟶wf 6538 ‘cfv 6542 (class class class)co 7411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7414 |
This theorem is referenced by: fovcdmda 7580 fovcdmd 7581 ovmpoelrn 8060 curry1f 8094 curry2f 8096 mapxpen 9145 axdc4lem 10452 axdc4uzlem 13952 imasmnd2 18696 grpsubcl 18939 imasgrp2 18974 imasring 20218 tsmsxplem1 23877 psmetcl 24033 xmetcl 24057 metcl 24058 blssm 24144 mbfi1fseqlem3 25467 mbfi1fseqlem4 25468 mbfi1fseqlem5 25469 grpocl 30020 grpodivcl 30059 vccl 30083 nvmcl 30166 cvmliftphtlem 34606 matunitlindflem1 36787 isbnd3 36955 clmgmOLD 37022 rngocl 37072 isdrngo2 37129 |
Copyright terms: Public domain | W3C validator |