MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fovcdm Structured version   Visualization version   GIF version

Theorem fovcdm 7602
Description: An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
fovcdm ((𝐹:(𝑅 × 𝑆)⟶𝐶𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)

Proof of Theorem fovcdm
StepHypRef Expression
1 opelxpi 5725 . . 3 ((𝐴𝑅𝐵𝑆) → ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆))
2 df-ov 7433 . . . 4 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
3 ffvelcdm 7100 . . . 4 ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆)) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ 𝐶)
42, 3eqeltrid 2842 . . 3 ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑅 × 𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶)
51, 4sylan2 593 . 2 ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶)
653impb 1114 1 ((𝐹:(𝑅 × 𝑆)⟶𝐶𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2105  cop 4636   × cxp 5686  wf 6558  cfv 6562  (class class class)co 7430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-fv 6570  df-ov 7433
This theorem is referenced by:  fovcdmda  7603  fovcdmd  7604  ovmpoelrn  8095  curry1f  8129  curry2f  8131  mapxpen  9181  axdc4lem  10492  axdc4uzlem  14020  imasmnd2  18799  grpsubcl  19050  imasgrp2  19085  imasring  20343  tsmsxplem1  24176  psmetcl  24332  xmetcl  24356  metcl  24357  blssm  24443  mbfi1fseqlem3  25766  mbfi1fseqlem4  25767  mbfi1fseqlem5  25768  grpocl  30528  grpodivcl  30567  vccl  30591  nvmcl  30674  cvmliftphtlem  35301  matunitlindflem1  37602  isbnd3  37770  clmgmOLD  37837  rngocl  37887  isdrngo2  37944
  Copyright terms: Public domain W3C validator