| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fovcdm | Structured version Visualization version GIF version | ||
| Description: An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006.) |
| Ref | Expression |
|---|---|
| fovcdm | ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxpi 5656 | . . 3 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) | |
| 2 | df-ov 7355 | . . . 4 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 3 | ffvelcdm 7020 | . . . 4 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) → (𝐹‘〈𝐴, 𝐵〉) ∈ 𝐶) | |
| 4 | 2, 3 | eqeltrid 2835 | . . 3 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶) |
| 5 | 1, 4 | sylan2 593 | . 2 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶) |
| 6 | 5 | 3impb 1114 | 1 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 〈cop 4581 × cxp 5617 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-fv 6495 df-ov 7355 |
| This theorem is referenced by: fovcdmda 7523 fovcdmd 7524 ovmpoelrn 8010 curry1f 8042 curry2f 8044 mapxpen 9062 axdc4lem 10352 axdc4uzlem 13896 imasmnd2 18688 grpsubcl 18939 imasgrp2 18974 imasring 20254 tsmsxplem1 24074 psmetcl 24228 xmetcl 24252 metcl 24253 blssm 24339 mbfi1fseqlem3 25651 mbfi1fseqlem4 25652 mbfi1fseqlem5 25653 grpocl 30487 grpodivcl 30526 vccl 30550 nvmcl 30633 cvmliftphtlem 35368 matunitlindflem1 37662 isbnd3 37830 clmgmOLD 37897 rngocl 37947 isdrngo2 38004 |
| Copyright terms: Public domain | W3C validator |