Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fovcdm | Structured version Visualization version GIF version |
Description: An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006.) |
Ref | Expression |
---|---|
fovcdm | ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5634 | . . 3 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) | |
2 | df-ov 7307 | . . . 4 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
3 | ffvelcdm 6988 | . . . 4 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) → (𝐹‘〈𝐴, 𝐵〉) ∈ 𝐶) | |
4 | 2, 3 | eqeltrid 2841 | . . 3 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶) |
5 | 1, 4 | sylan2 594 | . 2 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶) |
6 | 5 | 3impb 1115 | 1 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 ∈ wcel 2104 〈cop 4572 × cxp 5595 ⟶wf 6451 ‘cfv 6455 (class class class)co 7304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2707 ax-sep 5233 ax-nul 5240 ax-pr 5362 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3280 df-v 3440 df-dif 3896 df-un 3898 df-in 3900 df-ss 3910 df-nul 4264 df-if 4467 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4846 df-br 5083 df-opab 5145 df-id 5497 df-xp 5603 df-rel 5604 df-cnv 5605 df-co 5606 df-dm 5607 df-rn 5608 df-iota 6407 df-fun 6457 df-fn 6458 df-f 6459 df-fv 6463 df-ov 7307 |
This theorem is referenced by: fovcdmda 7472 fovcdmd 7473 ovmpoelrn 7941 curry1f 7975 curry2f 7977 mapxpen 8965 axdc4lem 10254 axdc4uzlem 13746 imasmnd2 18464 grpsubcl 18697 imasgrp2 18732 imasring 19900 tsmsxplem1 23346 psmetcl 23502 xmetcl 23526 metcl 23527 blssm 23613 mbfi1fseqlem3 24924 mbfi1fseqlem4 24925 mbfi1fseqlem5 24926 grpocl 28904 grpodivcl 28943 vccl 28967 nvmcl 29050 cvmliftphtlem 33321 matunitlindflem1 35815 isbnd3 35984 clmgmOLD 36051 rngocl 36101 isdrngo2 36158 |
Copyright terms: Public domain | W3C validator |