![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fovcdm | Structured version Visualization version GIF version |
Description: An operation's value belongs to its codomain. (Contributed by NM, 27-Aug-2006.) |
Ref | Expression |
---|---|
fovcdm | ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5725 | . . 3 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) | |
2 | df-ov 7433 | . . . 4 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
3 | ffvelcdm 7100 | . . . 4 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) → (𝐹‘〈𝐴, 𝐵〉) ∈ 𝐶) | |
4 | 2, 3 | eqeltrid 2842 | . . 3 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 〈𝐴, 𝐵〉 ∈ (𝑅 × 𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶) |
5 | 1, 4 | sylan2 593 | . 2 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶) |
6 | 5 | 3impb 1114 | 1 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 〈cop 4636 × cxp 5686 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 |
This theorem is referenced by: fovcdmda 7603 fovcdmd 7604 ovmpoelrn 8095 curry1f 8129 curry2f 8131 mapxpen 9181 axdc4lem 10492 axdc4uzlem 14020 imasmnd2 18799 grpsubcl 19050 imasgrp2 19085 imasring 20343 tsmsxplem1 24176 psmetcl 24332 xmetcl 24356 metcl 24357 blssm 24443 mbfi1fseqlem3 25766 mbfi1fseqlem4 25767 mbfi1fseqlem5 25768 grpocl 30528 grpodivcl 30567 vccl 30591 nvmcl 30674 cvmliftphtlem 35301 matunitlindflem1 37602 isbnd3 37770 clmgmOLD 37837 rngocl 37887 isdrngo2 37944 |
Copyright terms: Public domain | W3C validator |