![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > exidcl | Structured version Visualization version GIF version |
Description: Closure of the binary operation of a magma with identity. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
exidcl.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
exidcl | ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exidcl.1 | . . . . . . . 8 ⊢ 𝑋 = ran 𝐺 | |
2 | rngopidOLD 37813 | . . . . . . . 8 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺) | |
3 | 1, 2 | eqtrid 2792 | . . . . . . 7 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝑋 = dom dom 𝐺) |
4 | 3 | eleq2d 2830 | . . . . . 6 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ dom dom 𝐺)) |
5 | 3 | eleq2d 2830 | . . . . . 6 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (𝐵 ∈ 𝑋 ↔ 𝐵 ∈ dom dom 𝐺)) |
6 | 4, 5 | anbi12d 631 | . . . . 5 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ↔ (𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺))) |
7 | 6 | pm5.32i 574 | . . . 4 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ↔ (𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺))) |
8 | inss1 4258 | . . . . . . 7 ⊢ (Magma ∩ ExId ) ⊆ Magma | |
9 | 8 | sseli 4004 | . . . . . 6 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺 ∈ Magma) |
10 | eqid 2740 | . . . . . . 7 ⊢ dom dom 𝐺 = dom dom 𝐺 | |
11 | 10 | clmgmOLD 37811 | . . . . . 6 ⊢ ((𝐺 ∈ Magma ∧ 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
12 | 9, 11 | syl3an1 1163 | . . . . 5 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
13 | 12 | 3expb 1120 | . . . 4 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺)) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
14 | 7, 13 | sylbi 217 | . . 3 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
15 | 14 | 3impb 1115 | . 2 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
16 | 3 | 3ad2ant1 1133 | . 2 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑋 = dom dom 𝐺) |
17 | 15, 16 | eleqtrrd 2847 | 1 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 dom cdm 5700 ran crn 5701 (class class class)co 7448 ExId cexid 37804 Magmacmagm 37808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-ov 7451 df-exid 37805 df-mgmOLD 37809 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |