Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exidcl Structured version   Visualization version   GIF version

Theorem exidcl 36034
Description: Closure of the binary operation of a magma with identity. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypothesis
Ref Expression
exidcl.1 𝑋 = ran 𝐺
Assertion
Ref Expression
exidcl ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)

Proof of Theorem exidcl
StepHypRef Expression
1 exidcl.1 . . . . . . . 8 𝑋 = ran 𝐺
2 rngopidOLD 36011 . . . . . . . 8 (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺)
31, 2eqtrid 2790 . . . . . . 7 (𝐺 ∈ (Magma ∩ ExId ) → 𝑋 = dom dom 𝐺)
43eleq2d 2824 . . . . . 6 (𝐺 ∈ (Magma ∩ ExId ) → (𝐴𝑋𝐴 ∈ dom dom 𝐺))
53eleq2d 2824 . . . . . 6 (𝐺 ∈ (Magma ∩ ExId ) → (𝐵𝑋𝐵 ∈ dom dom 𝐺))
64, 5anbi12d 631 . . . . 5 (𝐺 ∈ (Magma ∩ ExId ) → ((𝐴𝑋𝐵𝑋) ↔ (𝐴 ∈ dom dom 𝐺𝐵 ∈ dom dom 𝐺)))
76pm5.32i 575 . . . 4 ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴𝑋𝐵𝑋)) ↔ (𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ dom dom 𝐺𝐵 ∈ dom dom 𝐺)))
8 inss1 4162 . . . . . . 7 (Magma ∩ ExId ) ⊆ Magma
98sseli 3917 . . . . . 6 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺 ∈ Magma)
10 eqid 2738 . . . . . . 7 dom dom 𝐺 = dom dom 𝐺
1110clmgmOLD 36009 . . . . . 6 ((𝐺 ∈ Magma ∧ 𝐴 ∈ dom dom 𝐺𝐵 ∈ dom dom 𝐺) → (𝐴𝐺𝐵) ∈ dom dom 𝐺)
129, 11syl3an1 1162 . . . . 5 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ dom dom 𝐺𝐵 ∈ dom dom 𝐺) → (𝐴𝐺𝐵) ∈ dom dom 𝐺)
13123expb 1119 . . . 4 ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ dom dom 𝐺𝐵 ∈ dom dom 𝐺)) → (𝐴𝐺𝐵) ∈ dom dom 𝐺)
147, 13sylbi 216 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐺𝐵) ∈ dom dom 𝐺)
15143impb 1114 . 2 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ dom dom 𝐺)
1633ad2ant1 1132 . 2 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴𝑋𝐵𝑋) → 𝑋 = dom dom 𝐺)
1715, 16eleqtrrd 2842 1 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cin 3886  dom cdm 5589  ran crn 5590  (class class class)co 7275   ExId cexid 36002  Magmacmagm 36006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-ov 7278  df-exid 36003  df-mgmOLD 36007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator