| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exidcl | Structured version Visualization version GIF version | ||
| Description: Closure of the binary operation of a magma with identity. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| exidcl.1 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| exidcl | ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exidcl.1 | . . . . . . . 8 ⊢ 𝑋 = ran 𝐺 | |
| 2 | rngopidOLD 37877 | . . . . . . . 8 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺) | |
| 3 | 1, 2 | eqtrid 2782 | . . . . . . 7 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝑋 = dom dom 𝐺) |
| 4 | 3 | eleq2d 2820 | . . . . . 6 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ dom dom 𝐺)) |
| 5 | 3 | eleq2d 2820 | . . . . . 6 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (𝐵 ∈ 𝑋 ↔ 𝐵 ∈ dom dom 𝐺)) |
| 6 | 4, 5 | anbi12d 632 | . . . . 5 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ↔ (𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺))) |
| 7 | 6 | pm5.32i 574 | . . . 4 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ↔ (𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺))) |
| 8 | inss1 4212 | . . . . . . 7 ⊢ (Magma ∩ ExId ) ⊆ Magma | |
| 9 | 8 | sseli 3954 | . . . . . 6 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺 ∈ Magma) |
| 10 | eqid 2735 | . . . . . . 7 ⊢ dom dom 𝐺 = dom dom 𝐺 | |
| 11 | 10 | clmgmOLD 37875 | . . . . . 6 ⊢ ((𝐺 ∈ Magma ∧ 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
| 12 | 9, 11 | syl3an1 1163 | . . . . 5 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
| 13 | 12 | 3expb 1120 | . . . 4 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺)) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
| 14 | 7, 13 | sylbi 217 | . . 3 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
| 15 | 14 | 3impb 1114 | . 2 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
| 16 | 3 | 3ad2ant1 1133 | . 2 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑋 = dom dom 𝐺) |
| 17 | 15, 16 | eleqtrrd 2837 | 1 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 dom cdm 5654 ran crn 5655 (class class class)co 7405 ExId cexid 37868 Magmacmagm 37872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fo 6537 df-fv 6539 df-ov 7408 df-exid 37869 df-mgmOLD 37873 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |