Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > exidcl | Structured version Visualization version GIF version |
Description: Closure of the binary operation of a magma with identity. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
exidcl.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
exidcl | ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exidcl.1 | . . . . . . . 8 ⊢ 𝑋 = ran 𝐺 | |
2 | rngopidOLD 35938 | . . . . . . . 8 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺) | |
3 | 1, 2 | syl5eq 2791 | . . . . . . 7 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝑋 = dom dom 𝐺) |
4 | 3 | eleq2d 2824 | . . . . . 6 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ dom dom 𝐺)) |
5 | 3 | eleq2d 2824 | . . . . . 6 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (𝐵 ∈ 𝑋 ↔ 𝐵 ∈ dom dom 𝐺)) |
6 | 4, 5 | anbi12d 630 | . . . . 5 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ↔ (𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺))) |
7 | 6 | pm5.32i 574 | . . . 4 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ↔ (𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺))) |
8 | inss1 4159 | . . . . . . 7 ⊢ (Magma ∩ ExId ) ⊆ Magma | |
9 | 8 | sseli 3913 | . . . . . 6 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺 ∈ Magma) |
10 | eqid 2738 | . . . . . . 7 ⊢ dom dom 𝐺 = dom dom 𝐺 | |
11 | 10 | clmgmOLD 35936 | . . . . . 6 ⊢ ((𝐺 ∈ Magma ∧ 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
12 | 9, 11 | syl3an1 1161 | . . . . 5 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
13 | 12 | 3expb 1118 | . . . 4 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺)) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
14 | 7, 13 | sylbi 216 | . . 3 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
15 | 14 | 3impb 1113 | . 2 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
16 | 3 | 3ad2ant1 1131 | . 2 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑋 = dom dom 𝐺) |
17 | 15, 16 | eleqtrrd 2842 | 1 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 dom cdm 5580 ran crn 5581 (class class class)co 7255 ExId cexid 35929 Magmacmagm 35933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fo 6424 df-fv 6426 df-ov 7258 df-exid 35930 df-mgmOLD 35934 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |