![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > exidcl | Structured version Visualization version GIF version |
Description: Closure of the binary operation of a magma with identity. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
exidcl.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
exidcl | ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exidcl.1 | . . . . . . . 8 ⊢ 𝑋 = ran 𝐺 | |
2 | rngopidOLD 37840 | . . . . . . . 8 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺) | |
3 | 1, 2 | eqtrid 2787 | . . . . . . 7 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝑋 = dom dom 𝐺) |
4 | 3 | eleq2d 2825 | . . . . . 6 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ dom dom 𝐺)) |
5 | 3 | eleq2d 2825 | . . . . . 6 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → (𝐵 ∈ 𝑋 ↔ 𝐵 ∈ dom dom 𝐺)) |
6 | 4, 5 | anbi12d 632 | . . . . 5 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ↔ (𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺))) |
7 | 6 | pm5.32i 574 | . . . 4 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) ↔ (𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺))) |
8 | inss1 4245 | . . . . . . 7 ⊢ (Magma ∩ ExId ) ⊆ Magma | |
9 | 8 | sseli 3991 | . . . . . 6 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺 ∈ Magma) |
10 | eqid 2735 | . . . . . . 7 ⊢ dom dom 𝐺 = dom dom 𝐺 | |
11 | 10 | clmgmOLD 37838 | . . . . . 6 ⊢ ((𝐺 ∈ Magma ∧ 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
12 | 9, 11 | syl3an1 1162 | . . . . 5 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
13 | 12 | 3expb 1119 | . . . 4 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ dom dom 𝐺 ∧ 𝐵 ∈ dom dom 𝐺)) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
14 | 7, 13 | sylbi 217 | . . 3 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
15 | 14 | 3impb 1114 | . 2 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ dom dom 𝐺) |
16 | 3 | 3ad2ant1 1132 | . 2 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑋 = dom dom 𝐺) |
17 | 15, 16 | eleqtrrd 2842 | 1 ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 dom cdm 5689 ran crn 5690 (class class class)co 7431 ExId cexid 37831 Magmacmagm 37835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-ov 7434 df-exid 37832 df-mgmOLD 37836 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |