Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exidcl Structured version   Visualization version   GIF version

Theorem exidcl 37936
Description: Closure of the binary operation of a magma with identity. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypothesis
Ref Expression
exidcl.1 𝑋 = ran 𝐺
Assertion
Ref Expression
exidcl ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)

Proof of Theorem exidcl
StepHypRef Expression
1 exidcl.1 . . . . . . . 8 𝑋 = ran 𝐺
2 rngopidOLD 37913 . . . . . . . 8 (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺)
31, 2eqtrid 2780 . . . . . . 7 (𝐺 ∈ (Magma ∩ ExId ) → 𝑋 = dom dom 𝐺)
43eleq2d 2819 . . . . . 6 (𝐺 ∈ (Magma ∩ ExId ) → (𝐴𝑋𝐴 ∈ dom dom 𝐺))
53eleq2d 2819 . . . . . 6 (𝐺 ∈ (Magma ∩ ExId ) → (𝐵𝑋𝐵 ∈ dom dom 𝐺))
64, 5anbi12d 632 . . . . 5 (𝐺 ∈ (Magma ∩ ExId ) → ((𝐴𝑋𝐵𝑋) ↔ (𝐴 ∈ dom dom 𝐺𝐵 ∈ dom dom 𝐺)))
76pm5.32i 574 . . . 4 ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴𝑋𝐵𝑋)) ↔ (𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ dom dom 𝐺𝐵 ∈ dom dom 𝐺)))
8 inss1 4186 . . . . . . 7 (Magma ∩ ExId ) ⊆ Magma
98sseli 3926 . . . . . 6 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺 ∈ Magma)
10 eqid 2733 . . . . . . 7 dom dom 𝐺 = dom dom 𝐺
1110clmgmOLD 37911 . . . . . 6 ((𝐺 ∈ Magma ∧ 𝐴 ∈ dom dom 𝐺𝐵 ∈ dom dom 𝐺) → (𝐴𝐺𝐵) ∈ dom dom 𝐺)
129, 11syl3an1 1163 . . . . 5 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ dom dom 𝐺𝐵 ∈ dom dom 𝐺) → (𝐴𝐺𝐵) ∈ dom dom 𝐺)
13123expb 1120 . . . 4 ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ dom dom 𝐺𝐵 ∈ dom dom 𝐺)) → (𝐴𝐺𝐵) ∈ dom dom 𝐺)
147, 13sylbi 217 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐺𝐵) ∈ dom dom 𝐺)
15143impb 1114 . 2 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ dom dom 𝐺)
1633ad2ant1 1133 . 2 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴𝑋𝐵𝑋) → 𝑋 = dom dom 𝐺)
1715, 16eleqtrrd 2836 1 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cin 3897  dom cdm 5619  ran crn 5620  (class class class)co 7352   ExId cexid 37904  Magmacmagm 37908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-ov 7355  df-exid 37905  df-mgmOLD 37909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator