Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exidcl Structured version   Visualization version   GIF version

Theorem exidcl 37870
Description: Closure of the binary operation of a magma with identity. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypothesis
Ref Expression
exidcl.1 𝑋 = ran 𝐺
Assertion
Ref Expression
exidcl ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)

Proof of Theorem exidcl
StepHypRef Expression
1 exidcl.1 . . . . . . . 8 𝑋 = ran 𝐺
2 rngopidOLD 37847 . . . . . . . 8 (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺)
31, 2eqtrid 2776 . . . . . . 7 (𝐺 ∈ (Magma ∩ ExId ) → 𝑋 = dom dom 𝐺)
43eleq2d 2814 . . . . . 6 (𝐺 ∈ (Magma ∩ ExId ) → (𝐴𝑋𝐴 ∈ dom dom 𝐺))
53eleq2d 2814 . . . . . 6 (𝐺 ∈ (Magma ∩ ExId ) → (𝐵𝑋𝐵 ∈ dom dom 𝐺))
64, 5anbi12d 632 . . . . 5 (𝐺 ∈ (Magma ∩ ExId ) → ((𝐴𝑋𝐵𝑋) ↔ (𝐴 ∈ dom dom 𝐺𝐵 ∈ dom dom 𝐺)))
76pm5.32i 574 . . . 4 ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴𝑋𝐵𝑋)) ↔ (𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ dom dom 𝐺𝐵 ∈ dom dom 𝐺)))
8 inss1 4200 . . . . . . 7 (Magma ∩ ExId ) ⊆ Magma
98sseli 3942 . . . . . 6 (𝐺 ∈ (Magma ∩ ExId ) → 𝐺 ∈ Magma)
10 eqid 2729 . . . . . . 7 dom dom 𝐺 = dom dom 𝐺
1110clmgmOLD 37845 . . . . . 6 ((𝐺 ∈ Magma ∧ 𝐴 ∈ dom dom 𝐺𝐵 ∈ dom dom 𝐺) → (𝐴𝐺𝐵) ∈ dom dom 𝐺)
129, 11syl3an1 1163 . . . . 5 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ dom dom 𝐺𝐵 ∈ dom dom 𝐺) → (𝐴𝐺𝐵) ∈ dom dom 𝐺)
13123expb 1120 . . . 4 ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴 ∈ dom dom 𝐺𝐵 ∈ dom dom 𝐺)) → (𝐴𝐺𝐵) ∈ dom dom 𝐺)
147, 13sylbi 217 . . 3 ((𝐺 ∈ (Magma ∩ ExId ) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐺𝐵) ∈ dom dom 𝐺)
15143impb 1114 . 2 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ dom dom 𝐺)
1633ad2ant1 1133 . 2 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴𝑋𝐵𝑋) → 𝑋 = dom dom 𝐺)
1715, 16eleqtrrd 2831 1 ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3913  dom cdm 5638  ran crn 5639  (class class class)co 7387   ExId cexid 37838  Magmacmagm 37842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-ov 7390  df-exid 37839  df-mgmOLD 37843
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator