Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cocnvf1o Structured version   Visualization version   GIF version

Theorem cocnvf1o 32681
Description: Composing with the inverse of a bijection. (Contributed by Thierry Arnoux, 15-Jan-2026.)
Hypotheses
Ref Expression
cocnvf1o.1 (𝜑𝐹:𝐴𝐵)
cocnvf1o.2 (𝜑𝐺:𝐴𝐵)
cocnvf1o.3 (𝜑𝐻:𝐴1-1-onto𝐴)
Assertion
Ref Expression
cocnvf1o (𝜑 → (𝐹 = (𝐺𝐻) ↔ 𝐺 = (𝐹𝐻)))

Proof of Theorem cocnvf1o
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑𝐹 = (𝐺𝐻)) → 𝐹 = (𝐺𝐻))
21coeq1d 5804 . . . 4 ((𝜑𝐹 = (𝐺𝐻)) → (𝐹𝐻) = ((𝐺𝐻) ∘ 𝐻))
3 coass 6214 . . . 4 ((𝐺𝐻) ∘ 𝐻) = (𝐺 ∘ (𝐻𝐻))
42, 3eqtrdi 2780 . . 3 ((𝜑𝐹 = (𝐺𝐻)) → (𝐹𝐻) = (𝐺 ∘ (𝐻𝐻)))
5 cocnvf1o.3 . . . . . . 7 (𝜑𝐻:𝐴1-1-onto𝐴)
6 f1ococnv2 6791 . . . . . . 7 (𝐻:𝐴1-1-onto𝐴 → (𝐻𝐻) = ( I ↾ 𝐴))
75, 6syl 17 . . . . . 6 (𝜑 → (𝐻𝐻) = ( I ↾ 𝐴))
87coeq2d 5805 . . . . 5 (𝜑 → (𝐺 ∘ (𝐻𝐻)) = (𝐺 ∘ ( I ↾ 𝐴)))
9 cocnvf1o.2 . . . . . 6 (𝜑𝐺:𝐴𝐵)
10 fcoi1 6698 . . . . . 6 (𝐺:𝐴𝐵 → (𝐺 ∘ ( I ↾ 𝐴)) = 𝐺)
119, 10syl 17 . . . . 5 (𝜑 → (𝐺 ∘ ( I ↾ 𝐴)) = 𝐺)
128, 11eqtrd 2764 . . . 4 (𝜑 → (𝐺 ∘ (𝐻𝐻)) = 𝐺)
1312adantr 480 . . 3 ((𝜑𝐹 = (𝐺𝐻)) → (𝐺 ∘ (𝐻𝐻)) = 𝐺)
144, 13eqtr2d 2765 . 2 ((𝜑𝐹 = (𝐺𝐻)) → 𝐺 = (𝐹𝐻))
15 simpr 484 . . . . 5 ((𝜑𝐺 = (𝐹𝐻)) → 𝐺 = (𝐹𝐻))
1615coeq1d 5804 . . . 4 ((𝜑𝐺 = (𝐹𝐻)) → (𝐺𝐻) = ((𝐹𝐻) ∘ 𝐻))
17 coass 6214 . . . 4 ((𝐹𝐻) ∘ 𝐻) = (𝐹 ∘ (𝐻𝐻))
1816, 17eqtrdi 2780 . . 3 ((𝜑𝐺 = (𝐹𝐻)) → (𝐺𝐻) = (𝐹 ∘ (𝐻𝐻)))
19 f1ococnv1 6793 . . . . . . 7 (𝐻:𝐴1-1-onto𝐴 → (𝐻𝐻) = ( I ↾ 𝐴))
205, 19syl 17 . . . . . 6 (𝜑 → (𝐻𝐻) = ( I ↾ 𝐴))
2120coeq2d 5805 . . . . 5 (𝜑 → (𝐹 ∘ (𝐻𝐻)) = (𝐹 ∘ ( I ↾ 𝐴)))
22 cocnvf1o.1 . . . . . 6 (𝜑𝐹:𝐴𝐵)
23 fcoi1 6698 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
2422, 23syl 17 . . . . 5 (𝜑 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
2521, 24eqtrd 2764 . . . 4 (𝜑 → (𝐹 ∘ (𝐻𝐻)) = 𝐹)
2625adantr 480 . . 3 ((𝜑𝐺 = (𝐹𝐻)) → (𝐹 ∘ (𝐻𝐻)) = 𝐹)
2718, 26eqtr2d 2765 . 2 ((𝜑𝐺 = (𝐹𝐻)) → 𝐹 = (𝐺𝐻))
2814, 27impbida 800 1 (𝜑 → (𝐹 = (𝐺𝐻) ↔ 𝐺 = (𝐹𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540   I cid 5513  ccnv 5618  cres 5621  ccom 5623  wf 6478  1-1-ontowf1o 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489
This theorem is referenced by:  mplvrpmrhm  33558
  Copyright terms: Public domain W3C validator