Proof of Theorem cocnvf1o
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹 = (𝐺 ∘ 𝐻)) → 𝐹 = (𝐺 ∘ 𝐻)) |
| 2 | 1 | coeq1d 5804 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 = (𝐺 ∘ 𝐻)) → (𝐹 ∘ ◡𝐻) = ((𝐺 ∘ 𝐻) ∘ ◡𝐻)) |
| 3 | | coass 6214 |
. . . 4
⊢ ((𝐺 ∘ 𝐻) ∘ ◡𝐻) = (𝐺 ∘ (𝐻 ∘ ◡𝐻)) |
| 4 | 2, 3 | eqtrdi 2780 |
. . 3
⊢ ((𝜑 ∧ 𝐹 = (𝐺 ∘ 𝐻)) → (𝐹 ∘ ◡𝐻) = (𝐺 ∘ (𝐻 ∘ ◡𝐻))) |
| 5 | | cocnvf1o.3 |
. . . . . . 7
⊢ (𝜑 → 𝐻:𝐴–1-1-onto→𝐴) |
| 6 | | f1ococnv2 6791 |
. . . . . . 7
⊢ (𝐻:𝐴–1-1-onto→𝐴 → (𝐻 ∘ ◡𝐻) = ( I ↾ 𝐴)) |
| 7 | 5, 6 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐻 ∘ ◡𝐻) = ( I ↾ 𝐴)) |
| 8 | 7 | coeq2d 5805 |
. . . . 5
⊢ (𝜑 → (𝐺 ∘ (𝐻 ∘ ◡𝐻)) = (𝐺 ∘ ( I ↾ 𝐴))) |
| 9 | | cocnvf1o.2 |
. . . . . 6
⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| 10 | | fcoi1 6698 |
. . . . . 6
⊢ (𝐺:𝐴⟶𝐵 → (𝐺 ∘ ( I ↾ 𝐴)) = 𝐺) |
| 11 | 9, 10 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐺 ∘ ( I ↾ 𝐴)) = 𝐺) |
| 12 | 8, 11 | eqtrd 2764 |
. . . 4
⊢ (𝜑 → (𝐺 ∘ (𝐻 ∘ ◡𝐻)) = 𝐺) |
| 13 | 12 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐹 = (𝐺 ∘ 𝐻)) → (𝐺 ∘ (𝐻 ∘ ◡𝐻)) = 𝐺) |
| 14 | 4, 13 | eqtr2d 2765 |
. 2
⊢ ((𝜑 ∧ 𝐹 = (𝐺 ∘ 𝐻)) → 𝐺 = (𝐹 ∘ ◡𝐻)) |
| 15 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝐺 = (𝐹 ∘ ◡𝐻)) → 𝐺 = (𝐹 ∘ ◡𝐻)) |
| 16 | 15 | coeq1d 5804 |
. . . 4
⊢ ((𝜑 ∧ 𝐺 = (𝐹 ∘ ◡𝐻)) → (𝐺 ∘ 𝐻) = ((𝐹 ∘ ◡𝐻) ∘ 𝐻)) |
| 17 | | coass 6214 |
. . . 4
⊢ ((𝐹 ∘ ◡𝐻) ∘ 𝐻) = (𝐹 ∘ (◡𝐻 ∘ 𝐻)) |
| 18 | 16, 17 | eqtrdi 2780 |
. . 3
⊢ ((𝜑 ∧ 𝐺 = (𝐹 ∘ ◡𝐻)) → (𝐺 ∘ 𝐻) = (𝐹 ∘ (◡𝐻 ∘ 𝐻))) |
| 19 | | f1ococnv1 6793 |
. . . . . . 7
⊢ (𝐻:𝐴–1-1-onto→𝐴 → (◡𝐻 ∘ 𝐻) = ( I ↾ 𝐴)) |
| 20 | 5, 19 | syl 17 |
. . . . . 6
⊢ (𝜑 → (◡𝐻 ∘ 𝐻) = ( I ↾ 𝐴)) |
| 21 | 20 | coeq2d 5805 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘ (◡𝐻 ∘ 𝐻)) = (𝐹 ∘ ( I ↾ 𝐴))) |
| 22 | | cocnvf1o.1 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 23 | | fcoi1 6698 |
. . . . . 6
⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| 24 | 22, 23 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹) |
| 25 | 21, 24 | eqtrd 2764 |
. . . 4
⊢ (𝜑 → (𝐹 ∘ (◡𝐻 ∘ 𝐻)) = 𝐹) |
| 26 | 25 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐺 = (𝐹 ∘ ◡𝐻)) → (𝐹 ∘ (◡𝐻 ∘ 𝐻)) = 𝐹) |
| 27 | 18, 26 | eqtr2d 2765 |
. 2
⊢ ((𝜑 ∧ 𝐺 = (𝐹 ∘ ◡𝐻)) → 𝐹 = (𝐺 ∘ 𝐻)) |
| 28 | 14, 27 | impbida 800 |
1
⊢ (𝜑 → (𝐹 = (𝐺 ∘ 𝐻) ↔ 𝐺 = (𝐹 ∘ ◡𝐻))) |