Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cocnvf1o Structured version   Visualization version   GIF version

Theorem cocnvf1o 32712
Description: Composing with the inverse of a bijection. (Contributed by Thierry Arnoux, 15-Jan-2026.)
Hypotheses
Ref Expression
cocnvf1o.1 (𝜑𝐹:𝐴𝐵)
cocnvf1o.2 (𝜑𝐺:𝐴𝐵)
cocnvf1o.3 (𝜑𝐻:𝐴1-1-onto𝐴)
Assertion
Ref Expression
cocnvf1o (𝜑 → (𝐹 = (𝐺𝐻) ↔ 𝐺 = (𝐹𝐻)))

Proof of Theorem cocnvf1o
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑𝐹 = (𝐺𝐻)) → 𝐹 = (𝐺𝐻))
21coeq1d 5800 . . . 4 ((𝜑𝐹 = (𝐺𝐻)) → (𝐹𝐻) = ((𝐺𝐻) ∘ 𝐻))
3 coass 6213 . . . 4 ((𝐺𝐻) ∘ 𝐻) = (𝐺 ∘ (𝐻𝐻))
42, 3eqtrdi 2782 . . 3 ((𝜑𝐹 = (𝐺𝐻)) → (𝐹𝐻) = (𝐺 ∘ (𝐻𝐻)))
5 cocnvf1o.3 . . . . . . 7 (𝜑𝐻:𝐴1-1-onto𝐴)
6 f1ococnv2 6790 . . . . . . 7 (𝐻:𝐴1-1-onto𝐴 → (𝐻𝐻) = ( I ↾ 𝐴))
75, 6syl 17 . . . . . 6 (𝜑 → (𝐻𝐻) = ( I ↾ 𝐴))
87coeq2d 5801 . . . . 5 (𝜑 → (𝐺 ∘ (𝐻𝐻)) = (𝐺 ∘ ( I ↾ 𝐴)))
9 cocnvf1o.2 . . . . . 6 (𝜑𝐺:𝐴𝐵)
10 fcoi1 6697 . . . . . 6 (𝐺:𝐴𝐵 → (𝐺 ∘ ( I ↾ 𝐴)) = 𝐺)
119, 10syl 17 . . . . 5 (𝜑 → (𝐺 ∘ ( I ↾ 𝐴)) = 𝐺)
128, 11eqtrd 2766 . . . 4 (𝜑 → (𝐺 ∘ (𝐻𝐻)) = 𝐺)
1312adantr 480 . . 3 ((𝜑𝐹 = (𝐺𝐻)) → (𝐺 ∘ (𝐻𝐻)) = 𝐺)
144, 13eqtr2d 2767 . 2 ((𝜑𝐹 = (𝐺𝐻)) → 𝐺 = (𝐹𝐻))
15 simpr 484 . . . . 5 ((𝜑𝐺 = (𝐹𝐻)) → 𝐺 = (𝐹𝐻))
1615coeq1d 5800 . . . 4 ((𝜑𝐺 = (𝐹𝐻)) → (𝐺𝐻) = ((𝐹𝐻) ∘ 𝐻))
17 coass 6213 . . . 4 ((𝐹𝐻) ∘ 𝐻) = (𝐹 ∘ (𝐻𝐻))
1816, 17eqtrdi 2782 . . 3 ((𝜑𝐺 = (𝐹𝐻)) → (𝐺𝐻) = (𝐹 ∘ (𝐻𝐻)))
19 f1ococnv1 6792 . . . . . . 7 (𝐻:𝐴1-1-onto𝐴 → (𝐻𝐻) = ( I ↾ 𝐴))
205, 19syl 17 . . . . . 6 (𝜑 → (𝐻𝐻) = ( I ↾ 𝐴))
2120coeq2d 5801 . . . . 5 (𝜑 → (𝐹 ∘ (𝐻𝐻)) = (𝐹 ∘ ( I ↾ 𝐴)))
22 cocnvf1o.1 . . . . . 6 (𝜑𝐹:𝐴𝐵)
23 fcoi1 6697 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
2422, 23syl 17 . . . . 5 (𝜑 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
2521, 24eqtrd 2766 . . . 4 (𝜑 → (𝐹 ∘ (𝐻𝐻)) = 𝐹)
2625adantr 480 . . 3 ((𝜑𝐺 = (𝐹𝐻)) → (𝐹 ∘ (𝐻𝐻)) = 𝐹)
2718, 26eqtr2d 2767 . 2 ((𝜑𝐺 = (𝐹𝐻)) → 𝐹 = (𝐺𝐻))
2814, 27impbida 800 1 (𝜑 → (𝐹 = (𝐺𝐻) ↔ 𝐺 = (𝐹𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541   I cid 5508  ccnv 5613  cres 5616  ccom 5618  wf 6477  1-1-ontowf1o 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488
This theorem is referenced by:  mplvrpmrhm  33577
  Copyright terms: Public domain W3C validator