![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmsq | Structured version Visualization version GIF version |
Description: The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. Equation I4 of [Ponnusamy] p. 362. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
nmsq.v | β’ π = (Baseβπ) |
nmsq.h | β’ , = (Β·πβπ) |
nmsq.n | β’ π = (normβπ) |
Ref | Expression |
---|---|
nmsq | β’ ((π β βPreHil β§ π΄ β π) β ((πβπ΄)β2) = (π΄ , π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmsq.v | . . . 4 β’ π = (Baseβπ) | |
2 | nmsq.h | . . . 4 β’ , = (Β·πβπ) | |
3 | nmsq.n | . . . 4 β’ π = (normβπ) | |
4 | 1, 2, 3 | cphnm 24954 | . . 3 β’ ((π β βPreHil β§ π΄ β π) β (πβπ΄) = (ββ(π΄ , π΄))) |
5 | 4 | oveq1d 7427 | . 2 β’ ((π β βPreHil β§ π΄ β π) β ((πβπ΄)β2) = ((ββ(π΄ , π΄))β2)) |
6 | 1, 2 | cphipcl 24952 | . . . 4 β’ ((π β βPreHil β§ π΄ β π β§ π΄ β π) β (π΄ , π΄) β β) |
7 | 6 | 3anidm23 1420 | . . 3 β’ ((π β βPreHil β§ π΄ β π) β (π΄ , π΄) β β) |
8 | 7 | sqsqrtd 15393 | . 2 β’ ((π β βPreHil β§ π΄ β π) β ((ββ(π΄ , π΄))β2) = (π΄ , π΄)) |
9 | 5, 8 | eqtrd 2771 | 1 β’ ((π β βPreHil β§ π΄ β π) β ((πβπ΄)β2) = (π΄ , π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βcfv 6543 (class class class)co 7412 βcc 11114 2c2 12274 βcexp 14034 βcsqrt 15187 Basecbs 17151 Β·πcip 17209 normcnm 24318 βPreHilccph 24927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 ax-mulf 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-rp 12982 df-fz 13492 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-0g 17394 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-grp 18861 df-minusg 18862 df-subg 19043 df-ghm 19132 df-cmn 19695 df-abl 19696 df-mgp 20033 df-rng 20051 df-ur 20080 df-ring 20133 df-cring 20134 df-oppr 20229 df-dvdsr 20252 df-unit 20253 df-subrg 20463 df-drng 20506 df-lmhm 20781 df-lvec 20862 df-sra 20934 df-rgmod 20935 df-cnfld 21149 df-phl 21402 df-cph 24929 |
This theorem is referenced by: cphnmf 24956 reipcl 24958 ipge0 24959 cphpyth 24977 nmparlem 25000 cphipval2 25002 cphipval 25004 pjthlem1 25198 |
Copyright terms: Public domain | W3C validator |