| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > crctisclwlk | Structured version Visualization version GIF version | ||
| Description: A circuit is a closed walk. (Contributed by AV, 17-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| crctisclwlk | ⊢ (𝐹(Circuits‘𝐺)𝑃 → 𝐹(ClWalks‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctprop 29720 | . 2 ⊢ (𝐹(Circuits‘𝐺)𝑃 → (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
| 2 | trliswlk 29623 | . . 3 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 3 | isclwlk 29701 | . . . 4 ⊢ (𝐹(ClWalks‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
| 4 | 3 | biimpri 228 | . . 3 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → 𝐹(ClWalks‘𝐺)𝑃) |
| 5 | 2, 4 | sylan 580 | . 2 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → 𝐹(ClWalks‘𝐺)𝑃) |
| 6 | 1, 5 | syl 17 | 1 ⊢ (𝐹(Circuits‘𝐺)𝑃 → 𝐹(ClWalks‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 class class class wbr 5119 ‘cfv 6530 0cc0 11127 ♯chash 14346 Walkscwlks 29522 Trailsctrls 29616 ClWalkscclwlks 29698 Circuitsccrcts 29712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fv 6538 df-wlks 29525 df-trls 29618 df-clwlks 29699 df-crcts 29714 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |