![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > crctisclwlk | Structured version Visualization version GIF version |
Description: A circuit is a closed walk. (Contributed by AV, 17-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
crctisclwlk | ⊢ (𝐹(Circuits‘𝐺)𝑃 → 𝐹(ClWalks‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crctprop 29824 | . 2 ⊢ (𝐹(Circuits‘𝐺)𝑃 → (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
2 | trliswlk 29729 | . . 3 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
3 | isclwlk 29805 | . . . 4 ⊢ (𝐹(ClWalks‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) | |
4 | 3 | biimpri 228 | . . 3 ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → 𝐹(ClWalks‘𝐺)𝑃) |
5 | 2, 4 | sylan 580 | . 2 ⊢ ((𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → 𝐹(ClWalks‘𝐺)𝑃) |
6 | 1, 5 | syl 17 | 1 ⊢ (𝐹(Circuits‘𝐺)𝑃 → 𝐹(ClWalks‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 class class class wbr 5147 ‘cfv 6562 0cc0 11152 ♯chash 14365 Walkscwlks 29628 Trailsctrls 29722 ClWalkscclwlks 29802 Circuitsccrcts 29816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fv 6570 df-wlks 29631 df-trls 29724 df-clwlks 29803 df-crcts 29818 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |