![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > crctisclwlk | Structured version Visualization version GIF version |
Description: A circuit is a closed walk. (Contributed by AV, 17-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
crctisclwlk | โข (๐น(Circuitsโ๐บ)๐ โ ๐น(ClWalksโ๐บ)๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crctprop 29518 | . 2 โข (๐น(Circuitsโ๐บ)๐ โ (๐น(Trailsโ๐บ)๐ โง (๐โ0) = (๐โ(โฏโ๐น)))) | |
2 | trliswlk 29423 | . . 3 โข (๐น(Trailsโ๐บ)๐ โ ๐น(Walksโ๐บ)๐) | |
3 | isclwlk 29499 | . . . 4 โข (๐น(ClWalksโ๐บ)๐ โ (๐น(Walksโ๐บ)๐ โง (๐โ0) = (๐โ(โฏโ๐น)))) | |
4 | 3 | biimpri 227 | . . 3 โข ((๐น(Walksโ๐บ)๐ โง (๐โ0) = (๐โ(โฏโ๐น))) โ ๐น(ClWalksโ๐บ)๐) |
5 | 2, 4 | sylan 579 | . 2 โข ((๐น(Trailsโ๐บ)๐ โง (๐โ0) = (๐โ(โฏโ๐น))) โ ๐น(ClWalksโ๐บ)๐) |
6 | 1, 5 | syl 17 | 1 โข (๐น(Circuitsโ๐บ)๐ โ ๐น(ClWalksโ๐บ)๐) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 395 = wceq 1533 class class class wbr 5138 โcfv 6533 0cc0 11106 โฏchash 14287 Walkscwlks 29322 Trailsctrls 29416 ClWalkscclwlks 29496 Circuitsccrcts 29510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fv 6541 df-wlks 29325 df-trls 29418 df-clwlks 29497 df-crcts 29512 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |