MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctisclwlk Structured version   Visualization version   GIF version

Theorem crctisclwlk 29520
Description: A circuit is a closed walk. (Contributed by AV, 17-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
crctisclwlk (๐น(Circuitsโ€˜๐บ)๐‘ƒ โ†’ ๐น(ClWalksโ€˜๐บ)๐‘ƒ)

Proof of Theorem crctisclwlk
StepHypRef Expression
1 crctprop 29518 . 2 (๐น(Circuitsโ€˜๐บ)๐‘ƒ โ†’ (๐น(Trailsโ€˜๐บ)๐‘ƒ โˆง (๐‘ƒโ€˜0) = (๐‘ƒโ€˜(โ™ฏโ€˜๐น))))
2 trliswlk 29423 . . 3 (๐น(Trailsโ€˜๐บ)๐‘ƒ โ†’ ๐น(Walksโ€˜๐บ)๐‘ƒ)
3 isclwlk 29499 . . . 4 (๐น(ClWalksโ€˜๐บ)๐‘ƒ โ†” (๐น(Walksโ€˜๐บ)๐‘ƒ โˆง (๐‘ƒโ€˜0) = (๐‘ƒโ€˜(โ™ฏโ€˜๐น))))
43biimpri 227 . . 3 ((๐น(Walksโ€˜๐บ)๐‘ƒ โˆง (๐‘ƒโ€˜0) = (๐‘ƒโ€˜(โ™ฏโ€˜๐น))) โ†’ ๐น(ClWalksโ€˜๐บ)๐‘ƒ)
52, 4sylan 579 . 2 ((๐น(Trailsโ€˜๐บ)๐‘ƒ โˆง (๐‘ƒโ€˜0) = (๐‘ƒโ€˜(โ™ฏโ€˜๐น))) โ†’ ๐น(ClWalksโ€˜๐บ)๐‘ƒ)
61, 5syl 17 1 (๐น(Circuitsโ€˜๐บ)๐‘ƒ โ†’ ๐น(ClWalksโ€˜๐บ)๐‘ƒ)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   = wceq 1533   class class class wbr 5138  โ€˜cfv 6533  0cc0 11106  โ™ฏchash 14287  Walkscwlks 29322  Trailsctrls 29416  ClWalkscclwlks 29496  Circuitsccrcts 29510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fv 6541  df-wlks 29325  df-trls 29418  df-clwlks 29497  df-crcts 29512
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator