MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctisclwlk Structured version   Visualization version   GIF version

Theorem crctisclwlk 29776
Description: A circuit is a closed walk. (Contributed by AV, 17-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
crctisclwlk (𝐹(Circuits‘𝐺)𝑃𝐹(ClWalks‘𝐺)𝑃)

Proof of Theorem crctisclwlk
StepHypRef Expression
1 crctprop 29774 . 2 (𝐹(Circuits‘𝐺)𝑃 → (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
2 trliswlk 29678 . . 3 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 isclwlk 29755 . . . 4 (𝐹(ClWalks‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
43biimpri 228 . . 3 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → 𝐹(ClWalks‘𝐺)𝑃)
52, 4sylan 580 . 2 ((𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → 𝐹(ClWalks‘𝐺)𝑃)
61, 5syl 17 1 (𝐹(Circuits‘𝐺)𝑃𝐹(ClWalks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541   class class class wbr 5095  cfv 6488  0cc0 11015  chash 14241  Walkscwlks 29579  Trailsctrls 29671  ClWalkscclwlks 29752  Circuitsccrcts 29766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fv 6496  df-wlks 29582  df-trls 29673  df-clwlks 29753  df-crcts 29768
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator