MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctistrl Structured version   Visualization version   GIF version

Theorem crctistrl 29725
Description: A circuit is a trail. (Contributed by Alexander van der Vekens, 30-Oct-2017.) (Revised by AV, 31-Jan-2021.)
Assertion
Ref Expression
crctistrl (𝐹(Circuits‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)

Proof of Theorem crctistrl
StepHypRef Expression
1 crctprop 29722 . 2 (𝐹(Circuits‘𝐺)𝑃 → (𝐹(Trails‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
21simpld 494 1 (𝐹(Circuits‘𝐺)𝑃𝐹(Trails‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   class class class wbr 5107  cfv 6511  0cc0 11068  chash 14295  Trailsctrls 29618  Circuitsccrcts 29714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-trls 29620  df-crcts 29716
This theorem is referenced by:  crctiswlk  29726  crctcshlem3  29749  crctcshwlk  29752  crctcshtrl  29753
  Copyright terms: Public domain W3C validator