MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctprop Structured version   Visualization version   GIF version

Theorem crctprop 29316
Description: The properties of a circuit: A circuit is a closed trail. (Contributed by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
crctprop (𝐹(Circuitsβ€˜πΊ)𝑃 β†’ (𝐹(Trailsβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))

Proof of Theorem crctprop
StepHypRef Expression
1 iscrct 29314 . 2 (𝐹(Circuitsβ€˜πΊ)𝑃 ↔ (𝐹(Trailsβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))
21biimpi 215 1 (𝐹(Circuitsβ€˜πΊ)𝑃 β†’ (𝐹(Trailsβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   class class class wbr 5147  β€˜cfv 6542  0cc0 11112  β™―chash 14294  Trailsctrls 29214  Circuitsccrcts 29308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fv 6550  df-trls 29216  df-crcts 29310
This theorem is referenced by:  crctisclwlk  29318  crctistrl  29319  usgr2trlncrct  29327  uspgrn2crct  29329  crctcshwlkn0  29342  eulercrct  29762  eucrct2eupth  29765
  Copyright terms: Public domain W3C validator