MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trliswlk Structured version   Visualization version   GIF version

Theorem trliswlk 29463
Description: A trail is a walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 29-Oct-2021.)
Assertion
Ref Expression
trliswlk (๐น(Trailsโ€˜๐บ)๐‘ƒ โ†’ ๐น(Walksโ€˜๐บ)๐‘ƒ)

Proof of Theorem trliswlk
StepHypRef Expression
1 istrl 29462 . 2 (๐น(Trailsโ€˜๐บ)๐‘ƒ โ†” (๐น(Walksโ€˜๐บ)๐‘ƒ โˆง Fun โ—ก๐น))
21simplbi 497 1 (๐น(Trailsโ€˜๐บ)๐‘ƒ โ†’ ๐น(Walksโ€˜๐บ)๐‘ƒ)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   class class class wbr 5141  โ—กccnv 5668  Fun wfun 6531  โ€˜cfv 6537  Walkscwlks 29362  Trailsctrls 29456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fv 6545  df-wlks 29365  df-trls 29458
This theorem is referenced by:  trlreslem  29465  trlres  29466  trlontrl  29477  pthiswlk  29493  pthdivtx  29495  spthdifv  29499  spthdep  29500  pthdepisspth  29501  usgr2trlspth  29527  crctisclwlk  29560  crctiswlk  29562  crctcshlem3  29582  crctcshwlk  29585  eupthiswlk  29974  eupthres  29977  trlsegvdeglem1  29982  eucrctshift  30005
  Copyright terms: Public domain W3C validator