| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trliswlk | Structured version Visualization version GIF version | ||
| Description: A trail is a walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 29-Oct-2021.) |
| Ref | Expression |
|---|---|
| trliswlk | ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istrl 29681 | . 2 ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5124 ◡ccnv 5658 Fun wfun 6530 ‘cfv 6536 Walkscwlks 29581 Trailsctrls 29675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-wlks 29584 df-trls 29677 |
| This theorem is referenced by: trlreslem 29684 trlres 29685 trlontrl 29696 pthiswlk 29712 pthdivtx 29714 dfpth2 29716 pthdifv 29717 spthdifv 29720 spthdep 29721 pthdepisspth 29722 usgr2trlspth 29748 crctisclwlk 29781 crctiswlk 29783 crctcshlem3 29806 crctcshwlk 29809 eupthiswlk 30198 eupthres 30201 trlsegvdeglem1 30206 eucrctshift 30229 upgrimtrlslem1 47897 upgrimtrlslem2 47898 upgrimtrls 47899 |
| Copyright terms: Public domain | W3C validator |