MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trliswlk Structured version   Visualization version   GIF version

Theorem trliswlk 29539
Description: A trail is a walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 29-Oct-2021.)
Assertion
Ref Expression
trliswlk (๐น(Trailsโ€˜๐บ)๐‘ƒ โ†’ ๐น(Walksโ€˜๐บ)๐‘ƒ)

Proof of Theorem trliswlk
StepHypRef Expression
1 istrl 29538 . 2 (๐น(Trailsโ€˜๐บ)๐‘ƒ โ†” (๐น(Walksโ€˜๐บ)๐‘ƒ โˆง Fun โ—ก๐น))
21simplbi 496 1 (๐น(Trailsโ€˜๐บ)๐‘ƒ โ†’ ๐น(Walksโ€˜๐บ)๐‘ƒ)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   class class class wbr 5152  โ—กccnv 5681  Fun wfun 6547  โ€˜cfv 6553  Walkscwlks 29438  Trailsctrls 29532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fv 6561  df-wlks 29441  df-trls 29534
This theorem is referenced by:  trlreslem  29541  trlres  29542  trlontrl  29553  pthiswlk  29569  pthdivtx  29571  spthdifv  29575  spthdep  29576  pthdepisspth  29577  usgr2trlspth  29603  crctisclwlk  29636  crctiswlk  29638  crctcshlem3  29658  crctcshwlk  29661  eupthiswlk  30050  eupthres  30053  trlsegvdeglem1  30058  eucrctshift  30081
  Copyright terms: Public domain W3C validator