MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trliswlk Structured version   Visualization version   GIF version

Theorem trliswlk 28065
Description: A trail is a walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 29-Oct-2021.)
Assertion
Ref Expression
trliswlk (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)

Proof of Theorem trliswlk
StepHypRef Expression
1 istrl 28064 . 2 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
21simplbi 498 1 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5074  ccnv 5588  Fun wfun 6427  cfv 6433  Walkscwlks 27963  Trailsctrls 28058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-wlks 27966  df-trls 28060
This theorem is referenced by:  trlreslem  28067  trlres  28068  trlontrl  28079  pthiswlk  28095  pthdivtx  28097  spthdifv  28101  spthdep  28102  pthdepisspth  28103  usgr2trlspth  28129  crctisclwlk  28162  crctiswlk  28164  crctcshlem3  28184  crctcshwlk  28187  eupthiswlk  28576  eupthres  28579  trlsegvdeglem1  28584  eucrctshift  28607
  Copyright terms: Public domain W3C validator