| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trliswlk | Structured version Visualization version GIF version | ||
| Description: A trail is a walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 29-Oct-2021.) |
| Ref | Expression |
|---|---|
| trliswlk | ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istrl 29674 | . 2 ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5091 ◡ccnv 5615 Fun wfun 6475 ‘cfv 6481 Walkscwlks 29576 Trailsctrls 29668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 df-wlks 29579 df-trls 29670 |
| This theorem is referenced by: trlreslem 29677 trlres 29678 trlontrl 29688 pthiswlk 29704 pthdivtx 29706 dfpth2 29708 pthdifv 29709 spthdifv 29712 spthdep 29713 pthdepisspth 29714 usgr2trlspth 29740 crctisclwlk 29773 crctiswlk 29775 crctcshlem3 29798 crctcshwlk 29801 eupthiswlk 30190 eupthres 30193 trlsegvdeglem1 30198 eucrctshift 30221 upgrimtrlslem1 47941 upgrimtrlslem2 47942 upgrimtrls 47943 |
| Copyright terms: Public domain | W3C validator |