| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trliswlk | Structured version Visualization version GIF version | ||
| Description: A trail is a walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 29-Oct-2021.) |
| Ref | Expression |
|---|---|
| trliswlk | ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istrl 29658 | . 2 ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 class class class wbr 5095 ◡ccnv 5622 Fun wfun 6480 ‘cfv 6486 Walkscwlks 29560 Trailsctrls 29652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-wlks 29563 df-trls 29654 |
| This theorem is referenced by: trlreslem 29661 trlres 29662 trlontrl 29672 pthiswlk 29688 pthdivtx 29690 dfpth2 29692 pthdifv 29693 spthdifv 29696 spthdep 29697 pthdepisspth 29698 usgr2trlspth 29724 crctisclwlk 29757 crctiswlk 29759 crctcshlem3 29782 crctcshwlk 29785 eupthiswlk 30174 eupthres 30177 trlsegvdeglem1 30182 eucrctshift 30205 upgrimtrlslem1 47892 upgrimtrlslem2 47893 upgrimtrls 47894 |
| Copyright terms: Public domain | W3C validator |