MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trliswlk Structured version   Visualization version   GIF version

Theorem trliswlk 29733
Description: A trail is a walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 29-Oct-2021.)
Assertion
Ref Expression
trliswlk (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)

Proof of Theorem trliswlk
StepHypRef Expression
1 istrl 29732 . 2 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
21simplbi 497 1 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5166  ccnv 5699  Fun wfun 6567  cfv 6573  Walkscwlks 29632  Trailsctrls 29726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-wlks 29635  df-trls 29728
This theorem is referenced by:  trlreslem  29735  trlres  29736  trlontrl  29747  pthiswlk  29763  pthdivtx  29765  spthdifv  29769  spthdep  29770  pthdepisspth  29771  usgr2trlspth  29797  crctisclwlk  29830  crctiswlk  29832  crctcshlem3  29852  crctcshwlk  29855  eupthiswlk  30244  eupthres  30247  trlsegvdeglem1  30252  eucrctshift  30275
  Copyright terms: Public domain W3C validator