|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > trliswlk | Structured version Visualization version GIF version | ||
| Description: A trail is a walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 29-Oct-2021.) | 
| Ref | Expression | 
|---|---|
| trliswlk | ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | istrl 29715 | . 2 ⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 class class class wbr 5142 ◡ccnv 5683 Fun wfun 6554 ‘cfv 6560 Walkscwlks 29615 Trailsctrls 29709 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fv 6568 df-wlks 29618 df-trls 29711 | 
| This theorem is referenced by: trlreslem 29718 trlres 29719 trlontrl 29730 pthiswlk 29746 pthdivtx 29748 dfpth2 29750 pthdifv 29751 spthdifv 29754 spthdep 29755 pthdepisspth 29756 usgr2trlspth 29782 crctisclwlk 29815 crctiswlk 29817 crctcshlem3 29840 crctcshwlk 29843 eupthiswlk 30232 eupthres 30235 trlsegvdeglem1 30240 eucrctshift 30263 | 
| Copyright terms: Public domain | W3C validator |