MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trliswlk Structured version   Visualization version   GIF version

Theorem trliswlk 29678
Description: A trail is a walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 29-Oct-2021.)
Assertion
Ref Expression
trliswlk (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)

Proof of Theorem trliswlk
StepHypRef Expression
1 istrl 29677 . 2 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
21simplbi 497 1 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 5095  ccnv 5620  Fun wfun 6482  cfv 6488  Walkscwlks 29579  Trailsctrls 29671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fv 6496  df-wlks 29582  df-trls 29673
This theorem is referenced by:  trlreslem  29680  trlres  29681  trlontrl  29691  pthiswlk  29707  pthdivtx  29709  dfpth2  29711  pthdifv  29712  spthdifv  29715  spthdep  29716  pthdepisspth  29717  usgr2trlspth  29743  crctisclwlk  29776  crctiswlk  29778  crctcshlem3  29801  crctcshwlk  29804  eupthiswlk  30196  eupthres  30199  trlsegvdeglem1  30204  eucrctshift  30227  upgrimtrlslem1  48031  upgrimtrlslem2  48032  upgrimtrls  48033
  Copyright terms: Public domain W3C validator