MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshword Structured version   Visualization version   GIF version

Theorem cshword 14695
Description: Perform a cyclical shift for a word. (Contributed by Alexander van der Vekens, 20-May-2018.) (Revised by AV, 12-Oct-2022.)
Assertion
Ref Expression
cshword ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))

Proof of Theorem cshword
Dummy variables 𝑙 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iswrd 14419 . . . . 5 (𝑊 ∈ Word 𝑉 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑉)
2 ffn 6651 . . . . . 6 (𝑊:(0..^𝑙)⟶𝑉𝑊 Fn (0..^𝑙))
32reximi 3070 . . . . 5 (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑉 → ∃𝑙 ∈ ℕ0 𝑊 Fn (0..^𝑙))
41, 3sylbi 217 . . . 4 (𝑊 ∈ Word 𝑉 → ∃𝑙 ∈ ℕ0 𝑊 Fn (0..^𝑙))
5 fneq1 6572 . . . . . 6 (𝑤 = 𝑊 → (𝑤 Fn (0..^𝑙) ↔ 𝑊 Fn (0..^𝑙)))
65rexbidv 3156 . . . . 5 (𝑤 = 𝑊 → (∃𝑙 ∈ ℕ0 𝑤 Fn (0..^𝑙) ↔ ∃𝑙 ∈ ℕ0 𝑊 Fn (0..^𝑙)))
76elabg 3632 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤 Fn (0..^𝑙)} ↔ ∃𝑙 ∈ ℕ0 𝑊 Fn (0..^𝑙)))
84, 7mpbird 257 . . 3 (𝑊 ∈ Word 𝑉𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤 Fn (0..^𝑙)})
9 cshfn 14694 . . 3 ((𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))))
108, 9sylan 580 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))))
11 iftrue 4481 . . . . 5 (𝑊 = ∅ → if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ∅)
1211adantr 480 . . . 4 ((𝑊 = ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ∅)
13 oveq1 7353 . . . . . . . 8 (𝑊 = ∅ → (𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) = (∅ substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))
14 swrd0 14563 . . . . . . . 8 (∅ substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) = ∅
1513, 14eqtrdi 2782 . . . . . . 7 (𝑊 = ∅ → (𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) = ∅)
16 oveq1 7353 . . . . . . . 8 (𝑊 = ∅ → (𝑊 prefix (𝑁 mod (♯‘𝑊))) = (∅ prefix (𝑁 mod (♯‘𝑊))))
17 pfx0 14580 . . . . . . . 8 (∅ prefix (𝑁 mod (♯‘𝑊))) = ∅
1816, 17eqtrdi 2782 . . . . . . 7 (𝑊 = ∅ → (𝑊 prefix (𝑁 mod (♯‘𝑊))) = ∅)
1915, 18oveq12d 7364 . . . . . 6 (𝑊 = ∅ → ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))) = (∅ ++ ∅))
2019adantr 480 . . . . 5 ((𝑊 = ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))) = (∅ ++ ∅))
21 ccatidid 14495 . . . . 5 (∅ ++ ∅) = ∅
2220, 21eqtr2di 2783 . . . 4 ((𝑊 = ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → ∅ = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2312, 22eqtrd 2766 . . 3 ((𝑊 = ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
24 iffalse 4484 . . . 4 𝑊 = ∅ → if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2524adantr 480 . . 3 ((¬ 𝑊 = ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2623, 25pm2.61ian 811 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2710, 26eqtrd 2766 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  c0 4283  ifcif 4475  cop 4582   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11003  0cn0 12378  cz 12465  ..^cfzo 13551   mod cmo 13770  chash 14234  Word cword 14417   ++ cconcat 14474   substr csubstr 14545   prefix cpfx 14575   cyclShift ccsh 14692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-hash 14235  df-word 14418  df-concat 14475  df-substr 14546  df-pfx 14576  df-csh 14693
This theorem is referenced by:  cshw0  14698  cshwmodn  14699  cshwcl  14702  cshwlen  14703  cshwidxmod  14707  repswcshw  14716  cshw1s2  32936
  Copyright terms: Public domain W3C validator