MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshword Structured version   Visualization version   GIF version

Theorem cshword 14504
Description: Perform a cyclical shift for a word. (Contributed by Alexander van der Vekens, 20-May-2018.) (Revised by AV, 12-Oct-2022.)
Assertion
Ref Expression
cshword ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))

Proof of Theorem cshword
Dummy variables 𝑙 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iswrd 14219 . . . . 5 (𝑊 ∈ Word 𝑉 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑉)
2 ffn 6600 . . . . . 6 (𝑊:(0..^𝑙)⟶𝑉𝑊 Fn (0..^𝑙))
32reximi 3178 . . . . 5 (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑉 → ∃𝑙 ∈ ℕ0 𝑊 Fn (0..^𝑙))
41, 3sylbi 216 . . . 4 (𝑊 ∈ Word 𝑉 → ∃𝑙 ∈ ℕ0 𝑊 Fn (0..^𝑙))
5 fneq1 6524 . . . . . 6 (𝑤 = 𝑊 → (𝑤 Fn (0..^𝑙) ↔ 𝑊 Fn (0..^𝑙)))
65rexbidv 3226 . . . . 5 (𝑤 = 𝑊 → (∃𝑙 ∈ ℕ0 𝑤 Fn (0..^𝑙) ↔ ∃𝑙 ∈ ℕ0 𝑊 Fn (0..^𝑙)))
76elabg 3607 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤 Fn (0..^𝑙)} ↔ ∃𝑙 ∈ ℕ0 𝑊 Fn (0..^𝑙)))
84, 7mpbird 256 . . 3 (𝑊 ∈ Word 𝑉𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤 Fn (0..^𝑙)})
9 cshfn 14503 . . 3 ((𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))))
108, 9sylan 580 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))))
11 iftrue 4465 . . . . 5 (𝑊 = ∅ → if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ∅)
1211adantr 481 . . . 4 ((𝑊 = ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ∅)
13 oveq1 7282 . . . . . . . 8 (𝑊 = ∅ → (𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) = (∅ substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))
14 swrd0 14371 . . . . . . . 8 (∅ substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) = ∅
1513, 14eqtrdi 2794 . . . . . . 7 (𝑊 = ∅ → (𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) = ∅)
16 oveq1 7282 . . . . . . . 8 (𝑊 = ∅ → (𝑊 prefix (𝑁 mod (♯‘𝑊))) = (∅ prefix (𝑁 mod (♯‘𝑊))))
17 pfx0 14388 . . . . . . . 8 (∅ prefix (𝑁 mod (♯‘𝑊))) = ∅
1816, 17eqtrdi 2794 . . . . . . 7 (𝑊 = ∅ → (𝑊 prefix (𝑁 mod (♯‘𝑊))) = ∅)
1915, 18oveq12d 7293 . . . . . 6 (𝑊 = ∅ → ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))) = (∅ ++ ∅))
2019adantr 481 . . . . 5 ((𝑊 = ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))) = (∅ ++ ∅))
21 ccatidid 14295 . . . . 5 (∅ ++ ∅) = ∅
2220, 21eqtr2di 2795 . . . 4 ((𝑊 = ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → ∅ = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2312, 22eqtrd 2778 . . 3 ((𝑊 = ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
24 iffalse 4468 . . . 4 𝑊 = ∅ → if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2524adantr 481 . . 3 ((¬ 𝑊 = ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2623, 25pm2.61ian 809 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2710, 26eqtrd 2778 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  c0 4256  ifcif 4459  cop 4567   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  0cc0 10871  0cn0 12233  cz 12319  ..^cfzo 13382   mod cmo 13589  chash 14044  Word cword 14217   ++ cconcat 14273   substr csubstr 14353   prefix cpfx 14383   cyclShift ccsh 14501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-substr 14354  df-pfx 14384  df-csh 14502
This theorem is referenced by:  cshw0  14507  cshwmodn  14508  cshwcl  14511  cshwlen  14512  cshwidxmod  14516  repswcshw  14525  cshw1s2  31232
  Copyright terms: Public domain W3C validator