Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2co2 Structured version   Visualization version   GIF version

Theorem afv2co2 47294
Description: Value of a function composition, analogous to fvco2 6919. (Contributed by AV, 8-Sep-2022.)
Assertion
Ref Expression
afv2co2 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ((𝐹𝐺)''''𝑋) = (𝐹''''(𝐺''''𝑋)))

Proof of Theorem afv2co2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imaco 6198 . . . . 5 ((𝐹𝐺) “ {𝑋}) = (𝐹 “ (𝐺 “ {𝑋}))
2 dfatsnafv2 47289 . . . . . . 7 (𝐺 defAt 𝑋 → {(𝐺''''𝑋)} = (𝐺 “ {𝑋}))
32adantr 480 . . . . . 6 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → {(𝐺''''𝑋)} = (𝐺 “ {𝑋}))
43imaeq2d 6009 . . . . 5 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝐹 “ {(𝐺''''𝑋)}) = (𝐹 “ (𝐺 “ {𝑋})))
51, 4eqtr4id 2785 . . . 4 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ((𝐹𝐺) “ {𝑋}) = (𝐹 “ {(𝐺''''𝑋)}))
65eleq2d 2817 . . 3 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝑥 ∈ ((𝐹𝐺) “ {𝑋}) ↔ 𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)})))
76iotabidv 6465 . 2 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)})))
8 dfatco 47293 . . 3 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝐹𝐺) defAt 𝑋)
9 dfafv23 47290 . . 3 ((𝐹𝐺) defAt 𝑋 → ((𝐹𝐺)''''𝑋) = (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})))
108, 9syl 17 . 2 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ((𝐹𝐺)''''𝑋) = (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})))
11 dfafv23 47290 . . 3 (𝐹 defAt (𝐺''''𝑋) → (𝐹''''(𝐺''''𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)})))
1211adantl 481 . 2 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝐹''''(𝐺''''𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)})))
137, 10, 123eqtr4d 2776 1 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ((𝐹𝐺)''''𝑋) = (𝐹''''(𝐺''''𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {csn 4576  cima 5619  ccom 5620  cio 6435   defAt wdfat 47153  ''''cafv2 47245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-dfat 47156  df-afv2 47246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator