Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2co2 Structured version   Visualization version   GIF version

Theorem afv2co2 47242
Description: Value of a function composition, analogous to fvco2 6986. (Contributed by AV, 8-Sep-2022.)
Assertion
Ref Expression
afv2co2 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ((𝐹𝐺)''''𝑋) = (𝐹''''(𝐺''''𝑋)))

Proof of Theorem afv2co2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imaco 6251 . . . . 5 ((𝐹𝐺) “ {𝑋}) = (𝐹 “ (𝐺 “ {𝑋}))
2 dfatsnafv2 47237 . . . . . . 7 (𝐺 defAt 𝑋 → {(𝐺''''𝑋)} = (𝐺 “ {𝑋}))
32adantr 480 . . . . . 6 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → {(𝐺''''𝑋)} = (𝐺 “ {𝑋}))
43imaeq2d 6058 . . . . 5 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝐹 “ {(𝐺''''𝑋)}) = (𝐹 “ (𝐺 “ {𝑋})))
51, 4eqtr4id 2788 . . . 4 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ((𝐹𝐺) “ {𝑋}) = (𝐹 “ {(𝐺''''𝑋)}))
65eleq2d 2819 . . 3 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝑥 ∈ ((𝐹𝐺) “ {𝑋}) ↔ 𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)})))
76iotabidv 6525 . 2 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)})))
8 dfatco 47241 . . 3 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝐹𝐺) defAt 𝑋)
9 dfafv23 47238 . . 3 ((𝐹𝐺) defAt 𝑋 → ((𝐹𝐺)''''𝑋) = (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})))
108, 9syl 17 . 2 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ((𝐹𝐺)''''𝑋) = (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})))
11 dfafv23 47238 . . 3 (𝐹 defAt (𝐺''''𝑋) → (𝐹''''(𝐺''''𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)})))
1211adantl 481 . 2 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝐹''''(𝐺''''𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)})))
137, 10, 123eqtr4d 2779 1 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ((𝐹𝐺)''''𝑋) = (𝐹''''(𝐺''''𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {csn 4606  cima 5668  ccom 5669  cio 6492   defAt wdfat 47101  ''''cafv2 47193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-dfat 47104  df-afv2 47194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator