Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2co2 | Structured version Visualization version GIF version |
Description: Value of a function composition, analogous to fvco2 6749. (Contributed by AV, 8-Sep-2022.) |
Ref | Expression |
---|---|
afv2co2 | ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ((𝐹 ∘ 𝐺)''''𝑋) = (𝐹''''(𝐺''''𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaco 6081 | . . . . 5 ⊢ ((𝐹 ∘ 𝐺) “ {𝑋}) = (𝐹 “ (𝐺 “ {𝑋})) | |
2 | dfatsnafv2 44198 | . . . . . . 7 ⊢ (𝐺 defAt 𝑋 → {(𝐺''''𝑋)} = (𝐺 “ {𝑋})) | |
3 | 2 | adantr 484 | . . . . . 6 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → {(𝐺''''𝑋)} = (𝐺 “ {𝑋})) |
4 | 3 | imaeq2d 5901 | . . . . 5 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝐹 “ {(𝐺''''𝑋)}) = (𝐹 “ (𝐺 “ {𝑋}))) |
5 | 1, 4 | eqtr4id 2812 | . . . 4 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ((𝐹 ∘ 𝐺) “ {𝑋}) = (𝐹 “ {(𝐺''''𝑋)})) |
6 | 5 | eleq2d 2837 | . . 3 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋}) ↔ 𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)}))) |
7 | 6 | iotabidv 6319 | . 2 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (℩𝑥𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)}))) |
8 | dfatco 44202 | . . 3 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝐹 ∘ 𝐺) defAt 𝑋) | |
9 | dfafv23 44199 | . . 3 ⊢ ((𝐹 ∘ 𝐺) defAt 𝑋 → ((𝐹 ∘ 𝐺)''''𝑋) = (℩𝑥𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋}))) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ((𝐹 ∘ 𝐺)''''𝑋) = (℩𝑥𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋}))) |
11 | dfafv23 44199 | . . 3 ⊢ (𝐹 defAt (𝐺''''𝑋) → (𝐹''''(𝐺''''𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)}))) | |
12 | 11 | adantl 485 | . 2 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝐹''''(𝐺''''𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)}))) |
13 | 7, 10, 12 | 3eqtr4d 2803 | 1 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ((𝐹 ∘ 𝐺)''''𝑋) = (𝐹''''(𝐺''''𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {csn 4522 “ cima 5527 ∘ ccom 5528 ℩cio 6292 defAt wdfat 44062 ''''cafv2 44154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-dfat 44065 df-afv2 44155 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |