Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2co2 | Structured version Visualization version GIF version |
Description: Value of a function composition, analogous to fvco2 6847. (Contributed by AV, 8-Sep-2022.) |
Ref | Expression |
---|---|
afv2co2 | ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ((𝐹 ∘ 𝐺)''''𝑋) = (𝐹''''(𝐺''''𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaco 6144 | . . . . 5 ⊢ ((𝐹 ∘ 𝐺) “ {𝑋}) = (𝐹 “ (𝐺 “ {𝑋})) | |
2 | dfatsnafv2 44631 | . . . . . . 7 ⊢ (𝐺 defAt 𝑋 → {(𝐺''''𝑋)} = (𝐺 “ {𝑋})) | |
3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → {(𝐺''''𝑋)} = (𝐺 “ {𝑋})) |
4 | 3 | imaeq2d 5958 | . . . . 5 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝐹 “ {(𝐺''''𝑋)}) = (𝐹 “ (𝐺 “ {𝑋}))) |
5 | 1, 4 | eqtr4id 2798 | . . . 4 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ((𝐹 ∘ 𝐺) “ {𝑋}) = (𝐹 “ {(𝐺''''𝑋)})) |
6 | 5 | eleq2d 2824 | . . 3 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋}) ↔ 𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)}))) |
7 | 6 | iotabidv 6402 | . 2 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (℩𝑥𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)}))) |
8 | dfatco 44635 | . . 3 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝐹 ∘ 𝐺) defAt 𝑋) | |
9 | dfafv23 44632 | . . 3 ⊢ ((𝐹 ∘ 𝐺) defAt 𝑋 → ((𝐹 ∘ 𝐺)''''𝑋) = (℩𝑥𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋}))) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ((𝐹 ∘ 𝐺)''''𝑋) = (℩𝑥𝑥 ∈ ((𝐹 ∘ 𝐺) “ {𝑋}))) |
11 | dfafv23 44632 | . . 3 ⊢ (𝐹 defAt (𝐺''''𝑋) → (𝐹''''(𝐺''''𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)}))) | |
12 | 11 | adantl 481 | . 2 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝐹''''(𝐺''''𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)}))) |
13 | 7, 10, 12 | 3eqtr4d 2788 | 1 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ((𝐹 ∘ 𝐺)''''𝑋) = (𝐹''''(𝐺''''𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 “ cima 5583 ∘ ccom 5584 ℩cio 6374 defAt wdfat 44495 ''''cafv2 44587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-dfat 44498 df-afv2 44588 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |