Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2co2 Structured version   Visualization version   GIF version

Theorem afv2co2 44749
Description: Value of a function composition, analogous to fvco2 6865. (Contributed by AV, 8-Sep-2022.)
Assertion
Ref Expression
afv2co2 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ((𝐹𝐺)''''𝑋) = (𝐹''''(𝐺''''𝑋)))

Proof of Theorem afv2co2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imaco 6155 . . . . 5 ((𝐹𝐺) “ {𝑋}) = (𝐹 “ (𝐺 “ {𝑋}))
2 dfatsnafv2 44744 . . . . . . 7 (𝐺 defAt 𝑋 → {(𝐺''''𝑋)} = (𝐺 “ {𝑋}))
32adantr 481 . . . . . 6 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → {(𝐺''''𝑋)} = (𝐺 “ {𝑋}))
43imaeq2d 5969 . . . . 5 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝐹 “ {(𝐺''''𝑋)}) = (𝐹 “ (𝐺 “ {𝑋})))
51, 4eqtr4id 2797 . . . 4 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ((𝐹𝐺) “ {𝑋}) = (𝐹 “ {(𝐺''''𝑋)}))
65eleq2d 2824 . . 3 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝑥 ∈ ((𝐹𝐺) “ {𝑋}) ↔ 𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)})))
76iotabidv 6417 . 2 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)})))
8 dfatco 44748 . . 3 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝐹𝐺) defAt 𝑋)
9 dfafv23 44745 . . 3 ((𝐹𝐺) defAt 𝑋 → ((𝐹𝐺)''''𝑋) = (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})))
108, 9syl 17 . 2 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ((𝐹𝐺)''''𝑋) = (℩𝑥𝑥 ∈ ((𝐹𝐺) “ {𝑋})))
11 dfafv23 44745 . . 3 (𝐹 defAt (𝐺''''𝑋) → (𝐹''''(𝐺''''𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)})))
1211adantl 482 . 2 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝐹''''(𝐺''''𝑋)) = (℩𝑥𝑥 ∈ (𝐹 “ {(𝐺''''𝑋)})))
137, 10, 123eqtr4d 2788 1 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ((𝐹𝐺)''''𝑋) = (𝐹''''(𝐺''''𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {csn 4561  cima 5592  ccom 5593  cio 6389   defAt wdfat 44608  ''''cafv2 44700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-dfat 44611  df-afv2 44701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator